Gas Products for Refining, Energy, and Chemical Manufacturing

10_gas plants and products used in refining and chemical manufacturing

Gas Products & Solutions to the refining and energy sector - including gas-phase and liquid-phase products, plant design, construction, plant operations management.

logostripe

What are your gas products requirements in your refining or chemical processing applications?

If you are in the business of energy, refining, or chemicals production – upstream, midstream, downstream or related areas – your requirements for gas consumption may be large enough to justify an onsite syngas (HYCO) plant or air separation unit. Or, your requirements may be for over-the-fence supply of oxygen or nitrogen, or a specialized gas management sub-system, or simply a cylinder of an EPA Protocol Standard.

While virtually any gas - from acetone to xylene - can have an application in the energy industry, the gas products of greatest interest for large consumption volume are:

  • Hydrogen
  • Carbon Monoxide
  • Syngas
  • Oxygen
  • Nitrogen
  • Argon
  • Carbon Dioxide
gases for refining applications shown in a variety of containers sizes

logostripe

Hydrogen

Refineries often produce their own hydrogen, but frequently may not produce the needed volume and purity. On-site hydrogen plants and pipeline hydrogen can supplement the hydrogen produced by the refinery.

Onsite hydrogen production capabilities range from less than 0.1 mmscfd to over 100 mmscfd. Plant design is optimized to give an appropriate gas cost based on capital, feedstock, and operating expenses.

Hydrogen Applications

Hydrocracking and Hydrotreating:

Hydrogen is required to remove sulfur and contaminants from gasoline and diesel as well as to convert components of crude oil into useful products.

Hydrogenation:

Hydrogen is a feedstock in hydrogenation reactions used to produce a number of chemicals and petrochemicals.

Sulfur Recovery and Acid Gas Plants:

Hydrogen can be added to the tail gas treating unit (TGTU) of a sulfur plant when the streams to be treated are leaner (i.e., less H2S).

 

Carbon Monoxide 

Carbon Monoxide is gas utilized as a feedstock in the production of a number of chemicals including acetic acid, polycarbonates, and polyurethane intermediates.

 

Syngas

Hydrogenation, ammonia, methanol, FT, MTR, oxoalcohols, and acetate acid are just a few of the chemical production processes that can benefit from an economical supply of H2, CO, or Syngas.

graphic of hydrogen, carbon monoxide, and syngas applications

Feedstock Considerations

SMR (Steam Methane Reforming) and ATR (Autothermal Reforming) are both appropriate for gaseous feedstocks. If feedstock is liquid or solid, then POX (Partial Oxidation) technology is required.

If heavy liquids or solids are the feedstocks, the only option is to use gasification. It is non-catalytic reactor that affects conversions at high temperatures. Extent of feed conversion is highest (very low methane slip in raw syngas product) compared to SMR and ATR due to much higher operating temperatures. Due to solids or very viscus liquid feeds, the feed preparation and handling sections for such plants as well as processing schemes tend to be quite elaborate and capital intensive.

Separation/Purification/Ratio Adjustment  table showing how syngas ratio can be varied to adjust to the application

Raw syngas is cooled from 1500 °F at the reformer exit to about 100 °F and then separated into pure H2, CO, or syngas product streams as required. Separation technologies include CO2 scrubbing using amines, water CO shift, H2 PSA, CO VSA, membranes, and HYCO cold box.

When only one product is required out of H2, CO, and syngas, then the production of steam and by-product streams are minimized by process optimization as site-specific economics dictate.

The desired ratio of H2 and CO in syngas can be controlled by adjusting the process.

If process requirements do not justify onsite production, Hydrogen may be supplied for bulk onsite storage as a cryogenic liquid or delivered in tube trailers in gas phase.

For laboratory, testing, or specialty applications, MATHESON supplies Hydrogen and Carbon Monoxide in high pressure cylinders – in a variety of purities, with custom mixtures also available.

 

Oxygen

Oxygen comprises nearly 21% of the air around us, and is produced using a technique known as air separation. Air separation may take place at extremely low temperatures (using a facility known as a cryogenic Air Separation Unit, ASU), or at near-ambient temperatures (non-cryogenic air separation). See the Technologies section for a review of air separation technologies.

ASUs can produce oxygen in purities from 90 to over 99.5%. Higher purities can be achieved with post-separation purification.

Oxygen can be produced onsite, delivered by pipeline, delivered by bulk trailer into cryogenic storage vessels, or delivered into smaller micro-bulk containers.

Oxygen is offered in cylinders (including multi-packs). High pressure tube trailers are another option for some applications.

Oxygen Applications

FCC Enrichment and NOx Reduction:

Oxygen can be added to the regenerator of a fluid catalytic cracker (FCC) to improve yields, assist with coke burning and heat balance, and to reduce cyclone velocities. This can also reduce NOx and CO emissions.

Additionally, oxygen is used to produce ozone, which is required in the LoTOx NOx removal equipment incorporated into many FCC units.

Sulfur Recovery and Acid Gas Plants:

The use of oxygen in a sulfur recovery unit (SRU) can increase plant capacity and help with contaminants and low hydrogen sulfide streams. Oxygen can also be used to boost temperature. Oxygen use can be intermittent or continuous.

Oxygenation of Wastewater: 

Oxygen is used to treat wastewater streams. The use of oxygen in place of air is often required by environmental regulations, and can also be used to improve efficiency, productivity and costs.

Petrochemical Production Applications: 

Oxygen is a required feedstock in many chemical manufacturing processes, including ethane cracking, ethylene oxide, titanium dioxide, propylene oxide, MEG, vinyl chloride monomer and vinyl acetate monomer production.

Many of these compounds are the backbone of the petrochemicals industry, so a safe, economical and reliable supply of oxygen is a necessity. Oxygen can also be used in oxidation and liquefaction processes, to produce syngas, and for air enrichment.

 

Nitrogen

Nitrogen is the most plentiful element in the air around us: slightly more than 78% of ambient air is Nitrogen. Like oxygen, nitrogen is produced by either cryogenic or non-cryogenic air separation. See the Technologies section for a comparison of the two air separation approaches.

Air separation is capable of producing nitrogen at purities exceeding 99.99%. Post-separation purification can be used to achieve higher levels.

Nitrogen can be produced onsite, delivered by pipeline, delivered by bulk trailer into cryogenic storage vessels, or delivered into smaller micro-bulk containers.

Nitrogen is offered in cylinders (including multi-packs). High pressure tube trailers are another option for some applications.

Nitrogen Applications

Oil and Gas Exploration and Production – Mid-Stream and Transmission:

Nitrogen is used to support oil and gas exploration, extraction, and processing. Nitrogen fluid pumping can provide cost, performance, and environmental advantages when used as an alternative to conventional hydraulic fracturing.

Pressure and Leak Testing, Purging and Blanketing, Emissions Control, Instrumentation and Safety:

An inert gas such as nitrogen finds a multitude of applications in a refining or chemical facility. Nitrogen can be used to pressurize new, repaired, or modified tanks, pipelines or vessels to check process integrity and leak tightness.

Plant tanks and storage vessels can be purged and blanketed with nitrogen to displace air and flammable vapors for both safety and quality purposes. Nitrogen can be used to maintain an inert atmosphere to prevent product degradation by contaminants, moisture, or oxygen.

Turnaround Services:

MATHESON can arrange to provide nitrogen and turnaround services to help your chemical plant get back up and running as quickly as possible. Using state-of-the-art equipment and MATHESON gases, we can provide cooling, heating and purging services on a short-term or intermittent basis.

Chemicals and Petrochemicals: 

Nitrogen is used as a reactant in the manufacture of ammonia (NH3) and other chemicals.

Other Applications: 

The use of nitrogen to transfer liquid products to and from railcars, tanker trucks, or storage vessels without requiring pumps, mechanical compressors or external power sources.

Dry, inert nitrogen is ideal for transferring toxic fluids, flammable materials, and those materials that might become corrosive when contacted with moisture.

Liquid Nitrogen: 

Liquid nitrogen can be used along with cryogenic recovery equipment to remove and recover volatile organic contaminants from process streams. Liquid nitrogen is also used in processes to remove nitrogen from natural gas.

Nitrogen (or liquid CO2) can be used to freeze a section of a pipeline's contents. The frozen section, or plug, permits work such as valve repairs.

The use of liquid Nitrogen is often preferred over mechanical refrigeration as a refrigerant for temperature control in a variety of processes, including solvent recovery and chemical processes.

 

Argon

Argon is the third largest component of air, with a concentration at just less than 1%. Like oxygen and nitrogen, argon is produced by cryogenic air separation. Air separation is capable of producing argon at purities exceeding 99.99%. Post-separation purification can be used to achieve higher levels.

Argon is typically produced at an ASU and delivered to the end user. It can be delivered by bulk trailer into cryogenic storage vessels, or delivered into smaller micro-bulk containers.

Argon is also offered in cylinders (including multi-packs). High pressure tube trailers are another option for some applications.

Argon Applications

Welding and Construction:

An inert gas such as Argon finds a multitude of applications in a refining or chemical facility. Argon is most often used as a welding gas to protect the weld area. It is also used in construction where an inert gas is required. It can be used in place of nitrogen to pressurize new, repaired, or modified tanks, pipelines or vessels to check process integrity and leak tightness.

Argon is also often used in reactions when an inert atmosphere is needed. It is used in this way for the production of titanium and other reactive elements. Argon is used in fluorescent tubes and low-energy light bulbs and in the production of double-pane windows.

 

Carbon Dioxide

As much as we hear about carbon dioxide in the news, CO2 concentration in the atmosphere is roughly 0.04%, effectively disqualifying the atmosphere as a resource for CO2 collection. Instead, carbon dioxide is produced as a byproduct of the industrial production of ammonia and hydrogen.

Carbon dioxide can be produced onsite, delivered by pipeline, delivered by bulk trailer into cryogenic storage vessels, or delivered into smaller micro-bulk containers.

Carbon dioxide is offered in cylinders (including multi-packs). High pressure tube trailers are another option for some applications.

Carbon Dioxide Applications

Oil and Gas Exploration and Production – Enhanced Oil Recovery (EOR):

The use of carbon dioxide is emerging as a leading approach for enhanced oil recovery (EOR) at "mature" oil fields.

Wastewater Treatment: 

Carbon dioxide can be used for pH control in wastewater treatment.

Liquid Carbon Dioxide: 

Liquid carbon dioxide can be used along with cryogenic recovery equipment to remove and recover volatile organic contaminants from process streams.

Liquid carbon dioxide (or liquid nitrogen) can be used to freeze a section of a pipeline's contents. The frozen section, or plug, permits work such as valve repairs.

The use of liquid carbon dioxide (or nitrogen) is often preferred over mechanical refrigeration as a refrigerant for temperature control in a variety of processes, including solvent recovery and chemical processes.

 

logostripe

Refining

Interested in starting a dialogue about gas supply for your refining application?

Contact the Refining/Engineering Experts directly.

 

 

On this page:

  • Hydrogen
  • Carbon Monoxide
  • Syngas
  • Oxygen
  • Nitrogen
  • Argon
  • Carbon Dioxide

 

Also see: