

WK-9000 (White Knight[™]) Gas Purifiers

Overview

NANOCHEM[®] WK-9000 (White Knight[™]) purifiers offer the highest lifetimes and the best impurity removal efficiencies in a very economical design. The WK-9000 purifiers are available in both single and dual configurations. The optional dual purifier bypass includes a purge manifold.

Features and Benefits

- For point-of-use to bulk flow specialty gas purification
- Highest Lifetimes
- Best Impurity Removal Efficiencies
 - Removes critical contaminants to sub part-per-trillion levels
- Enhances manufacturing process economy and improves equipment performance
- Provides consistently high purity gas under fluctuating inlet impurity conditions
- Improves component lifetime and reduces particle generation by removing moisture from corrosive gases
- Easy to install and operate
- No heating or cooling required
- Quick start up
- Metal parts are type 316L stainless steel, or Nickel 200
- Particle filters are PTFE
- Economical, low cost of ownership

Impurities Removed

Gas Type	Contaminants	Outlet Purity	
Inerts - Nitrogen (N2),	H ₂ O	< 86 ppt	
Argon (Ar), other inerts	O ₂	< 50 ppt	
	CO	< 100 ppt	
	CO ₂	< 24 ppt	
	Benzene	< 156 ppq	
	Toluene	< 93 ppq	
	Ethylbenzene	< 96 ppq	
	m,p-Xylene	< 79 ppq	
	o-Xylene	< 112 ppq	
	Refractories*	< 134 ppq	
	H ₂	< 1 ppb	
Ammonia (NH ₃)	H_2O	< 45 ppb	
	O ₂	< 0.1 ppb	
	CO ₂	< 11 ppb	
	Carbamate	< 11 ppb	
	GeH₄	< 1 ppb	
	SiH ₄	< 3 ppb	
	Siloxanes	< 40 ppb	
	Metals		
	Al	< 0.6 ppb	
	Cu	< 0.27 ppb	
	Fe	< 0.8 ppb	
	К	< 0.35 ppb	
	Na	< 0.27 ppb	
	Si	< 1.3 ppb	
	W	< 0.11 ppb	
	Zn	< 0.27 ppb	
	Zr	< 0.11 ppb	
-	Hydrocarbons from Liquid NH_3		
	Napthenic and Paraffins	85% removal	
	Ethyl Benzene	96% removal	
	Dissolved other HC	<200 ppb	
	Hydrocarbons from Gaseous NH_3		
	n-Butane	< 30 ppb	
	Ethylbenzene	< 30 ppb	
Carbon Dioxide (Purifier	Isopropyl Alcohol	< 200 ppt	
material HCX)	Acetone	< 93 ppt	
	Propene	< 1 ppt	
	Ethanol	< 1 ppt	
	Carbon Disulfide	< 1 ppt	
	Hexane	< 1 ppt	
	Benzene	< 1 ppt	

Gas Type	Contaminants	Outlet Purity	
Carbon Dioxide (Purifier material HCX) continued	Heptane	< 1 ppt	
	Toluene	< 1 ppt	
	m,p-Xylene	< 1 ppt	
	o-Xylene	< 1 ppt	
	Ethyl Toluene	< 1 ppt	
	1,3,5-Trimethyl Benzene	< 1 ppt	
	1,2,4-Trimethyl Benzene	< 1 ppt	
	DichloroBenzene	< 1 ppt	
Silane (SiH ₄)	H_2O	< 100 ppt	
	O ₂	< 100 ppt	
	CO ₂	< 100 ppt	
	CO**	<1ppb	
	Chlorosilanes, disilane, siloxanes, arsine, phosphine		
Hydrogen (H ₂)	H ₂ O	< 100 ppt	
	O ₂	< 100 ppt	
	CO ₂	< 100 ppt	
Methane (CH ₄)	CO**	<1 ppb	
Ethane (C_2H_6), other HC	NOx, SOx, H2S		
Sulfur Hexafluoride (SF $_6$)	H₂O in inert gas	< 100 ppt	
	O_2 in inert gas	< 100 ppt	
	CO₂ in inert gas	< 100 ppt	
Carbon Tetrafluoride	H ₂ O in sulfur hexafluoride	< 10 ppb	
(CF ₄)	O ₂ in sulfur hexafluoride	< 10 ppb	
Other Fluorocarbons	H ₂ O in sulfur hexafluoride	< 10 ppb	
	O2 in sulfur hexafluoride	< 10 ppb	
Oxygen (O ₂),	H ₂ O	< 10 ppb	
Carbon Dioxide (CO ₂),	H ₂ O	< 10 ppb	
Nitrous Oxide (N ₂ O)	H ₂ O	< 10 ppb	
Carbon Monoxide (CO)	Metal Carbonyls: Fe, Ni		
Corrosives (HCI, HBr, CI ₂ ,	H₂O in inert gas	<1 ppb	
SiH ₂ Cl ₂ , SiHCl ₃ , BCl ₃)	H₂O in HBr	< 100 ppb	
	H₂O in HCl	< 100 ppb	
	Volatile Metals***		
	Мо	< 4 ppb	
	Ti	< 13 ppb	
	Fe(CO)5	< 50 ppb	

Impurity removal depends on purifier material and incoming gas specification

*Refractories as TMDSO (Tetramethyldisiloxane) **CO is removed efficiently by OMX & OMX-Plus™ media at low flow rates (recommend 1/10 of normal flow rate)

***Metals removed as measured on wafer via VPD-ICPMS:

Al, Ca, Cr, Fe, Mg, Ni, K, Na, Zn

Metals removal as demonstrated by intrinsic resistivity measurements on wafer grown by TCS: Without MTX Purifier: <200 ohm-cm

With MTX Purifier: > 2500 ohm-cm and total metals on water <1E10 atoms/cm2

Analytical Characterization of NANOCHEM[®] NHX[™] Purifier

Impurity/Matrix	Capacity (L/L)	Efficiency (ppb)	Challenge (ppm)	Method
H₂S in He	6	<0.3 (D/L)	50	GC-AED
H₂S in Ar	31	<0.3 (D/L)	35	API-MS
H_2S in NH_3	25	<45 (D/L)	1000	FTIR
CO ₂ in He	5	<11 (D/L)	500	GC-DID
CO ₂ in NH ₃	_	<11 (D/L)	25	GC-DID
GeH_4 in N_2	_	<0.1 (D/L)	2.5	API-MS
SiH_4 in N_2	_	<0.1 (D/L)	2.5	API-MS
Siloxanes in N ₂	_	<-0.1 (D/L)	(trace)	API-MS
GeH_4 in NH_3	_	<0.5 (D/L)	1.0	GC-AED
SiH_4 in NH_3	_	<1 (D/L)	1.0	GC-AED
TEOS (siloxane) in NH ₃	_	<40 (D/L)	640	GC-DID
O ₂ in NH ₃	—	<50 (D/L)	100	GC-DID

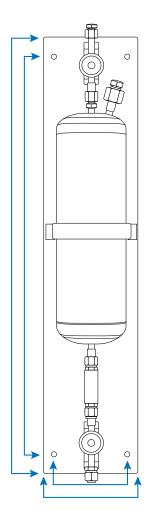
Purifier Models

	WK-9000H Single Purifier	WK-9000 Dual Purifier
Media bed volume	9000 ml	9000 ml
Maximum flow rate (in nitrogen), slpm (NM³/hr)	2000 (120)	4000 (240)*
Pressure Drop at maximum flow rate (psi), tested in N2 at 90 psi inlet	<17 (<0.12 MPa)	<17 (<0.12 MPa)
Max permissible operating pressure, psi	250 (1.7 MPa)	250 (1.7 MPa)

*Both purifiers must be used in parallel path configuration

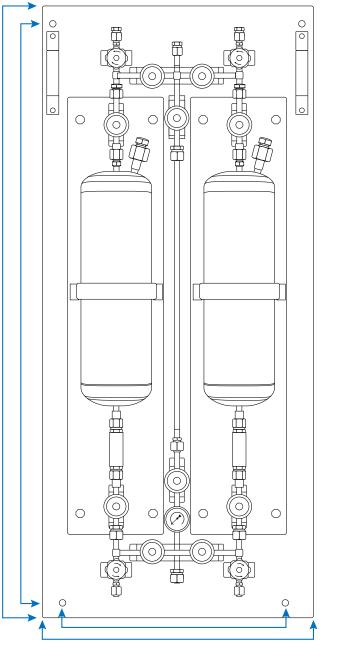
Specifications

- 0.003 μm filter with 99.9999999% retention (PTFE or 316L SS)
- Internal surface finish < 15 μ in Ra
- Maximum operating temperature is 40°C
- Inlet and outlet isolation valves


Connections

• Male inlet and outlet connections, 1/2" face seal

Options


Three-valve manifold with isolation and bypass valves allows disconnection of purifier without interrupting process gas flow

Dimensions

Mounting Holes: Width 6.68" (169.7 mm) +/- 0.010" (0.254 mm) Back Plate: Width 8.75" (222.3 mm) +/- 0.010" (0.254 mm) Mounting Holes: Length 36.00" (914.4 mm) +/- 0.010" (0.254 mm) Back Plate: Length 40.00" (1016.0 mm) +/- 0.010" (0.254 mm)

NANOCHEM® Single Purifier Model WK-9000H

Mounting Holes: Width 22.00" (558.8 mm) +/- 0.010" (0.254 mm) Back Plate: Width 25.00" (635.0 mm) +/- 0.010" (0.254 mm) Mounting Holes: Length 53.00" (1346.2 mm) +/- 0.010" (0.254 mm) Back Plate: Length 56.00" (1422.4 mm) +/- 0.010" (0.254 mm)

Dimensions in inches (mm)

NANOCHEM® Dual Purifier Model WK-9000 with Bypass Model BP-WK-9000

Specifications are subject to change. Please check www.mathesongas.com for most current information. Copyright 2025 Matheson Tri-Gas, Inc. All Rights Reserved.

All contents of this document are subject to change without notice and do not represent a commitment on the part of Matheson Tri-Gas, Inc. Every effort is made to ensure the accuracy of this information. However, due to differences in actual and ongoing operational processes and product improvements and revisions, Matheson Tri-Gas, Inc. cannot guarantee the accuracy of this material, nor can it accept responsibility for errors or omissions. This document is intended to serve as a general orientation and cannot be relied upon for a specific operation. No warranties of any nature are extended by the information contained in these copyrighted materials.

All names, products, and services mentioned herein are the trademarks or registered trademarks of their respective organizations and are the sole property of their respective owners. Matheson and the Matheson logo are registered trademarks of Matheson Tri-Gas, Inc. White Knight is a trademark of Matheson Tri-Gas, Inc.

NANOCHEM is a registered trademark of Matheson Tri-Gas, Inc. Printed in USA PB075 Rev 04/2025

www.mathesongas.com Tel: 800-416-2505 Email: Info@mathesongas.com