1. PRODUCT IDENTIFICATION

CHEMICAL NAME; CLASS: METHANE IN ARGON/HELIUM/NITROGEN OR AIR GAS MIXTURE

TRADE NAMES: P-5; P-10 (Methane/Argon Mixture)

CHEMICAL FAMILY: Organic Hydrocarbon/Inert Gas or Air Mixture PRODUCT USE: Calibration Gas

MANUFACTURER

MATHESON TRI-GAS, INC.
959 ROUTE 46 EAST
PARSIPPANY, NJ 07054-0624
USA
Phone: 973/257-1100

EMERGENCY PHONE:
CHEMTREC DOMESTIC U.S.: 1-800-424-9300
CHEMTREC INTERNATIONAL: 1-703-527-3887
CANUTEC (CANADA): 1-613-996-6666

2. COMPOSITION and INFORMATION ON INGREDIENTS

(10,000 ppm = 1%)

<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>CAS #</th>
<th>mole %</th>
<th>EXPOSURE LIMITS IN AIR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACGIH-TLV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TWA ppm</td>
</tr>
<tr>
<td>Methane</td>
<td>74-82-8</td>
<td>≤ 5.0 In Air</td>
<td>≦ 10.0 In Argon</td>
</tr>
</tbody>
</table>

The balance of this gas mixture consists of one of the following inert gases or Air.

- Air (compressed, atmospheric) 132259-10-0
 Compressed air is a mixture of approximately 79% Nitrogen, approximately 21% Oxygen and other trace gases. No exposure limits are applicable to Air, Nitrogen or Oxygen.
- Argon 7440-37-1
 There are no specific exposure limits for Argon. Argon is a simple asphyxiant (SA). Oxygen levels should be maintained above 19.5%.
- Helium 7440-59-7
 There are no specific exposure limits for Helium. Helium is a simple asphyxiant (SA). Oxygen levels should be maintained above 19.5%.
- Nitrogen 7727-37-9
 There are no specific exposure limits for Nitrogen. Nitrogen is a simple asphyxiant (SA). Oxygen levels should be maintained above 19.5%.

NIC = Notice of Intended Change. NOTE: All WHMIS required information is included. It is located in appropriate sections based on the ANSI Z400.1-1998 format. This product has been classified in accordance with the hazard criteria of the CPR and the MSDS contains all the information required by the CPR.

See Section 16 for Definitions of Terms Used.
3. HAZARD IDENTIFICATION

EMERGENCY OVERVIEW: This is a colorless, odorless, non-flammable gas mixture. The main health hazard associated with releases of this gas mixture is asphyxiation by displacement of oxygen, as each component of this mixture is a simple asphyxiant. A cylinder rupture hazard exists when this gas mixture, which is under pressure, is subject to heat or flames.

SYMPTOMS OF OVER-EXPOSURE BY ROUTE OF EXPOSURE: The most significant route of over-exposure for this product is by inhalation.

INHALATION: High concentrations of this gas mixture can cause an oxygen-deficient environment, especially if released in a poorly-ventilated area (e.g., an enclosed or confined space). Individuals breathing such an atmosphere may experience symptoms which include headaches, ringing in ears, dizziness, drowsiness, unconsciousness, nausea, vomiting, and depression of all the senses. Under some circumstances of overexposure, death may occur. The effects associated with various levels of oxygen are as follows:

<table>
<thead>
<tr>
<th>CONCENTRATION OF OXYGEN</th>
<th>OBSERVED EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-16% Oxygen:</td>
<td>Breathing and pulse rate increase, muscular coordination slightly disturbed.</td>
</tr>
<tr>
<td>10-14% Oxygen:</td>
<td>Emotional upset, abnormal fatigue, disturbed respiration.</td>
</tr>
<tr>
<td>6-10% Oxygen:</td>
<td>Nausea, vomiting, collapse, or loss of consciousness.</td>
</tr>
<tr>
<td>Below 6%:</td>
<td>Convulsive movements, possible respiratory collapse, and death.</td>
</tr>
</tbody>
</table>

CONTACT WITH SKIN or EYES: Contact with rapidly expanding gases (which are released under high pressure) may cause frostbite.

SKIN ABSORPTION: No component of this gas mixture presents a hazard of skin absorption.

HEALTH EFFECTS OR RISKS FROM EXPOSURE: Over-exposure to this gas mixture may cause the following health effects:

ACUTE: The most significant hazard associated with this gas mixture is inhalation of oxygen-deficient atmospheres. Symptoms of oxygen deficiency include ringing in ears, headaches, shortness of breath, wheezing, dizziness, indigestion, and nausea. At high concentrations, unconsciousness or death may occur.

CHRONIC: Chronic exposure to oxygen-deficient atmospheres (below 18% oxygen in air) may affect the heart and nervous system.

TARGET ORGANS: ACUTE: Respiratory system. CHRONIC: Cardiac system, central nervous system.

HMIS RATING: HEALTH HAZARD = 0 FLAMMABILITY HAZARD = 0 PHYSICAL HAZARD = 0
Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe

4. FIRST-AID MEASURES

GENERAL INFORMATION: Remove to fresh air, as quickly as possible. Only trained personnel should administer supplemental oxygen and/or cardio-pulmonary resuscitation, if necessary. Seek medical attention immediately.

SKIN EXPOSURE: If release of this gas mixture has resulted in frostbite, warm affected area slowly. Seek immediate medical attention.

EYE EXPOSURE: If release of this gas mixture has affected the eyes, seek immediate medical attention.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: Pre-existing respiratory conditions may be aggravated by overexposure to this gas mixture.

5. FIRE-FIGHTING MEASURES

FLASH POINT: Not applicable.

AUTOIGNITION TEMPERATURE: Not applicable
5. FIRE-FIGHTING MEASURES (Continued)

FLAMMABLE LIMITS (in air by volume, %):

- **Lower (LEL):** Not applicable.
- **Upper (UEL):** Not applicable.

FIRE EXTINGUISHING MATERIALS: Use extinguishing materials appropriate for surrounding materials involved in the fire. Water spray should be used to cool fire-exposed containers.

UNUSUAL FIRE AND EXPLOSION HAZARD: This gas mixture does not burn; however, cylinders, when involved in a fire, may rupture or burst in the heat of the fire.

EXPLOSION SENSITIVITY TO MECHANICAL IMPACT: Not sensitive.

EXPLOSION SENSITIVITY TO STATIC DISCHARGE: Not sensitive.

SPECIAL FIRE-FIGHTING PROCEDURES: Incipient fire responders should wear eye protection. Structural fire fighters must wear Self-Contained Breathing Apparatus and full protective equipment.

Immediately cool the cylinders with water spray from a maximum distance. When cool, move cylinders from fire area if this can be done without risk to firefighters.

6. ACCIDENTAL RELEASE MEASURES

LEAK RESPONSE: Uncontrolled releases should be responded to by trained personnel using pre-planned procedures. Proper protective equipment should be used in the event of a significant release from a single cylinder. Call CHEMTREC (1-800-424-9300) for emergency assistance. Or if in Canada, call CANUTEC (613-996-6666).

Attempt to close the main source valve prior to entering the area. If this does not stop the release (or if it is not possible to reach the valve), allow the gas to release in-place or remove it to a safe area and allow the gas to be released there. Monitor the surrounding area for the level of Oxygen. The atmosphere must have at least 19.5 percent Oxygen before personnel can be allowed in the area without Self-Contained Breathing Apparatus.

7. HANDLING and USE

WORK PRACTICES AND HYGIENE PRACTICES

- Do not eat or drink while handling chemicals.
- Be aware of all potential exposure symptoms; exposures to a fatal oxygen-deficient atmosphere could occur without any significant warning symptoms.
- All work operations should be monitored in such a way that emergency personnel can be immediately contacted in the event of a release.
- Workers who handle this gas mixture should wear protective clothing, as listed in Section 8 (Exposure Controls and Personal Protection).
- If ventilation controls are not adequate to provide sufficient oxygen content, proper respiratory protection equipment should be provided and workers using such equipment should be carefully trained in its operation and limitations.
- Precautions must always be taken to prevent suck-back of foreign materials into the cylinder by using a check-valve, or vacuum break, since suck-back may cause dangerous pressure changes within the cylinder.

STORAGE AND HANDLING PRACTICES: Cylinders should be stored upright and be firmly secured to prevent falling or being knocked-over. Cylinders can be stored in the open, but in such cases, should be protected against extremes of weather and from the dampness of the ground to prevent rusting. Cylinders should be stored in dry, well-ventilated areas away from sources of heat or ignition. Do not allow the area where cylinders are stored to exceed 52°C (125°F).
7. HANDLING and USE (Continued)

SPECIAL PRECAUTIONS FOR HANDLING GAS CYLINDERS: Compressed gases can present significant safety hazards. The following rules are applicable to work situations in which cylinders are being used.

Before Use: Move cylinders with a suitable hand-truck. Do not drag, slide or roll cylinders. Do not drop cylinders or permit them to strike each other. Secure cylinders firmly. Leave the valve protection cap (where provided) in-place until cylinder is ready for use.

During Use: Use designated CGA fittings and other support equipment. Do not use adapters. Do not use oils or grease on gas-handling fittings or equipment. Immediately contact the supplier if there are any difficulties associated with operating cylinder valve. Never insert an object (e.g. wrench, screwdriver, pry bar, etc.) into valve cap openings. Doing so may damage valve, causing a leak to occur. Use an adjustable strap wrench to remove over-tight or rusted caps. Never strike an arc, on a compressed gas cylinder or make a cylinder part of and electric circuit.

After Use: Close main cylinder valve. Replace valve protection cap. Close valve after each use and when empty. Mark empty cylinders “EMPTY”.

PROTECTIVE PRACTICES DURING MAINTENANCE OF CONTAMINATED EQUIPMENT: Refer to current CGA Guidelines for information on protective practices during maintenance of contaminated equipment.

8. EXPOSURE CONTROLS - PERSONAL PROTECTION

VENTILATION AND ENGINEERING CONTROLS: Use with adequate ventilation to ensure compliance with exposure limits described in Section 2 (Composition and Information on Ingredients). Local exhaust ventilation is preferred, because it prevents dispersion of this gas mixture into the work place by eliminating it at its source. If appropriate, install automatic monitoring equipment to detect the level of Oxygen.

RESPIRATORY PROTECTION: Maintain the level Oxygen above 19.5% in the workplace. If necessary, use only respiratory protection authorized in the U.S. Federal OSHA Respiratory Protection Standard (29 CFR 1910.134), or equivalent U.S. State standards and Canadian CSA Standard Z94.4-93. Oxygen levels below 19.5% are considered IDLH by OSHA. In such atmospheres, use of a full-facepiece pressure/demand SCBA or a full facepiece, supplied air respirator with auxiliary self-contained air supply is required under OSHA’s Respiratory Protection Standard (1910.134-1998).

EYE PROTECTION: Splash goggles or safety glasses. If necessary, refer to U.S. OSHA 29 CFR 1910.133, or Canadian Standards.

HAND PROTECTION: Wear mechanically-resistant gloves when handling cylinders containing this gas mixture. If necessary, refer to U.S. OSHA 29 CFR 1910.138 or appropriate Standards of Canada.

BODY PROTECTION: Use body protection appropriate for task. Transfer of large quantities under pressure may require protective equipment appropriate to the task. If a hazard of injury to the feet exists due to falling objects, rolling objects, where objects may pierce the soles of the feet or where employee’s feet may be exposed to electrical hazards, use foot protection, as described in U.S. OSHA 29 CFR.

9. PHYSICAL and CHEMICAL PROPERTIES

The following information is for Air, a possible main component of this gas mixture:

GAS DENSITY: 0.07493 lb/cu ft (1.2 kg/m³) EVAPORATION RATE (nBuAc = 1): Not applicable.
SPECIFIC GRAVITY (air = 1): 1 FREEZING POINT: -216.2°C (-357.2°F)
SOLUBILITY IN WATER: 0.0292 BOILING POINT (at 1 atmos.): -194.3°C (-317.7°F)
EXPANSION RATIO: Not applicable. SPECIFIC VOLUME (ft³/lb): 13.346
ODOR THRESHOLD: Not applicable. MOLECULAR WEIGHT: 28.975
VAPOR PRESSURE (psia): Not applicable. COEFFICIENT WATER/OIL DISTRIBUTION: Not applicable.

The following information is for Argon, a possible main component of this gas mixture:

GAS DENSITY: 0.103 lb/cu ft (1.650 kg/m³) EVAPORATION RATE (nBuAc = 1): Not applicable.
SPECIFIC GRAVITY (air = 1): 1.38 FREEZING POINT: -189.2°C (-332.6°F)
SOLUBILITY IN WATER: 0.056 BOILING POINT (at 1 atmos.): -185.9°C (-302.6°F)
EXPANSION RATIO: Not applicable. SPECIFIC VOLUME (ft³/lb): 9.71
ODOR THRESHOLD: Not applicable. MOLECULAR WEIGHT: 39.95
VAPOR PRESSURE (psia): Not applicable. COEFFICIENT WATER/OIL DISTRIBUTION: Not applicable.
The following information is for Helium, a possible main component of this gas mixture:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Density</td>
<td>0.103 lb/cu ft (1.165 kg/m³)</td>
</tr>
<tr>
<td>Specific Gravity (air = 1)</td>
<td>0.138</td>
</tr>
<tr>
<td>Solubility in Water</td>
<td>0.0094</td>
</tr>
<tr>
<td>Expansion Ratio</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Odor Threshold</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Vapor Pressure (psia)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>COEFFICIENT WATER/OIL DISTRIBUTION</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

The following information is for Nitrogen, a possible main component of this gas mixture:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Density</td>
<td>0.072 lb/cu ft (1.153 kg/m³)</td>
</tr>
<tr>
<td>Specific Gravity (air = 1)</td>
<td>0.967</td>
</tr>
<tr>
<td>Solubility in Water</td>
<td>0.023</td>
</tr>
<tr>
<td>Expansion Ratio</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Odor Threshold</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Vapor Pressure (psia)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>COEFFICIENT WATER/OIL DISTRIBUTION</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

The following information is pertinent to this product:

APPEARANCE, ODOR AND COLOR: This gas mixture is colorless and odorless.

HOW TO DETECT THIS SUBSTANCE (warning properties): There are no distinct warning properties of this gas mixture. In terms of leak detection, fittings and joints can be painted with a soap solution to detect leaks, which will be indicated by a bubble formation.

10. STABILITY and REACTIVITY

STABILITY: Stable at standard temperatures and pressures.

DECOMPOSITION PRODUCTS: The Methane component of this gas mixture will decompose into carbon dioxide and carbon monoxide at extremely high temperatures. The inert gas components of this product does not decompose, per se, but may react with other compounds in the heat of a fire.

MATERIALS WITH WHICH SUBSTANCE IS INCOMPATIBLE: The Methane component of this gas mixture is incompatible with strong oxidizers (i.e. chlorine, bromine pentafluoride, oxygen difluoride, and nitrogen trifluoride). The inert balance gas components, are relatively inert gases.

HAZARDOUS POLYMERIZATION: Will not occur.

CONDITIONS TO AVOID: Contact with incompatible materials. Cylinders exposed to high temperatures or direct flame can rupture or burst.

11. TOXICOLOGICAL INFORMATION

TOXICITY DATA: Argon, Helium, Nitrogen and Methane are simple asphyxiants (SA), which act to displace oxygen in the environment.

SUSPECTED CANCER AGENT: The components of this gas mixture are not found on the following lists: FEDERAL OSHA Z LIST, IARC, NTP, CAL/OSHA, and therefore is not considered to be, nor suspected to be a cancer-causing agent by these agencies.

IRRITANCY OF PRODUCT: This gas mixture is not irritating to contaminated tissue.

SENSITIZATION TO THE PRODUCT: The components of this product are not known to be skin or respiratory sensitizers.

REPRODUCTIVE TOXICITY INFORMATION: Listed below is information concerning the effects of the components of this gas mixture on the human reproductive system.

- **Mutagenicity:** The components of this gas mixture are not reported to cause mutagenic effects in humans.
- **Embryotoxicity:** The components of this gas mixture are not reported to cause embryotoxic effects in humans.
- **Teratogenicity:** The components of this gas mixture are not reported to cause teratogenic effects in humans.
- **Reproductive Toxicity:** The components of this gas mixture are not reported to cause adverse reproductive effects in humans.
11. TOXICOLOGICAL INFORMATION (Continued)

BIOLOGICAL EXPOSURE INDICES (BEIs): Currently, there are no Biological Exposure Indices (BEIs) determined for the components of this gas mixture.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL STABILITY: This gas mixture will be dissipated rapidly in well-ventilated areas.

EFFECT OF MATERIAL ON PLANTS or ANIMALS: Any adverse effect on animals would be related to oxygen deficient environments.

EFFECT OF CHEMICAL ON AQUATIC LIFE: No an adverse effect from this gas mixture on aquatic life is expected.

13. DISPOSAL CONSIDERATIONS

PREPARING WASTES FOR DISPOSAL: Waste disposal must be in accordance with appropriate Federal, State, and local regulations. Return cylinders with any residual product to Matheson Tri-Gas. Do not dispose of locally.

14. TRANSPORTATION INFORMATION

THIS GAS MIXTURE IS HAZARDOUS AS DEFINED BY 49 CFR 172.101 BY THE U.S. DEPARTMENT OF TRANSPORTATION.

PROPER SHIPPING NAME: Compressed gases, n.o.s.
(Methane, Argon) or (Methane, Helium) or (Methane, Nitrogen) or (Methane, Air)

HAZARD CLASS NUMBER and DESCRIPTION: 2.2 (Non-Flammable Gas)

UN IDENTIFICATION NUMBER: UN 1956

PACKING GROUP: Not applicable.

D.O.T HAZARD LABEL: Non-Flammable Gas

NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER (2000): 126

MARINE POLLUTANT: The components of this gas mixture are not classified by the DOT as a Marine Pollutants (as defined by 49 CFR 172.101, Appendix B).

SPECIAL SHIPPING INFORMATION: Cylinders should be transported in a secure position, in a well-ventilated vehicle. The transportation of compressed gas cylinders in automobiles or in closed-body vehicles present serious safety hazards and should be discouraged.

NOTE: Shipment of compressed gas cylinders which have not been filled with the owner’s consent is a violation of Federal law [49 CFR, Part 173.301 (b)].

TRANSPORT CANADA TRANSPORTATION OF DANGEROUS GOODS REGULATIONS: This gas mixture is considered as dangerous goods, per regulations of Transport Canada.

PROPER SHIPPING NAME: Compressed gases, n.o.s.
(Methane, Argon) or (Methane, Helium) or (Methane, Nitrogen) or (Methane, Air)

HAZARD CLASS NUMBER and DESCRIPTION: 2.2 (Non-Flammable Gas)

UN IDENTIFICATION NUMBER: UN 1956

PACKING GROUP: Not Applicable

HAZARD LABEL: Class 2.2 (Non-Flammable Gas)

SPECIAL PROVISIONS: None

EXPLOSIVE LIMIT AND LIMITED QUANTITY INDEX: 0.12

ERAP INDEX: None

PASSENGER CARRYING SHIP INDEX: None

PASSENGER CARRYING ROAD VEHICLE OR PASSENGER CARRYING RAILWAY VEHICLE INDEX: 75

NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER (2000): 126

NOTE: Shipment of compressed gas cylinders via Public Passenger Road Vehicle is a violation of Canadian law (Transport Canada Transportation of Dangerous Goods Act, 1992).
15. REGULATORY INFORMATION

ADDITIONAL U.S. REGULATIONS:

U.S. SARA REPORTING REQUIREMENTS: No component of this product is subject to the reporting requirements of Sections 302, 304 and 313 of Title III of the Superfund Amendments and Reauthorization Act.

U.S. SARA THRESHOLD PLANNING QUANTITY: There are no specific Threshold Planning Quantities for the components of this product. The default Federal MSDS submission and inventory requirement filing threshold of 10,000 lbs (4,540 kg) therefore applies, per 40 CFR 370.20.

U.S. SARA HAZARD CATEGORIES (SECTION 311/312, 40 CFR 370-21): ACUTE: No; CHRONIC: No; FIRE: No; REACTIVE: No; SUDDEN RELEASE: Yes

U.S. TSCA INVENTORY STATUS: Components of this product are listed on the TSCA Inventory.

U.S. CERCLA REPORTABLE QUANTITY (RQ): Not applicable.

OTHER U.S. FEDERAL REGULATIONS: Methane is subject to the reporting requirements of Section 112(r) of the Clean Air Act. The threshold quantity for Methane is 10,000 lbs (4,540 kg). Methane is listed as a Regulated Substance in quantities of 10,000 lbs (4,540 kg) or greater, per 40 CFR, Part 68 of the Risk Management for Chemical Accidental Release.

U.S. STATE REGULATORY INFORMATION: Components of this product are covered under some specific State regulations, as denoted below (other State regulatory lists may exist; individual States should be contacted regarding full compliance).

California - Permissible Exposure Limits for Chemical Contaminants: Argon, Helium, Methane.
New Jersey - Right to Know Hazardous Substance List: Argon, Helium, Methane, Nitrogen.

CALIFORNIA SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT (PROPOSITION 65): No component of this product is on the California Proposition 65 lists.

LABELING: Cylinders of this gas mixture should be labeled for precautionary information per the guidelines of the CGA. Refer to the CGA for further information.

ADDITIONAL CANADIAN REGULATIONS:

CANADIAN DSL/NDSL INVENTORY STATUS: The components of this product are listed on the DSL Inventory.

OTHER CANADIAN REGULATIONS: Not applicable.

CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA) PRIORITIES SUBSTANCES LISTS: The components of this product are not on the CEPA Priorities Substances Lists.

CANADIAN WHMIS CLASSIFICATION AND SYMBOLS: This gas mixture would be categorized as a Controlled Product, Hazard Class: A (compressed gas). The following symbol is required for WHMIS compliance for this gas mixture.

16. OTHER INFORMATION

CREATION DATE: March 13, 2000 REVISION DATE: November 19, 2003
REVISION HISTORY: Up-date of manufacturer address and phone.
MIXTURES: When two or more gases or liquefied gases are mixed, their hazardous properties may combine to create additional, unexpected hazards. Obtain and evaluate the safety information for each component before you use the mixture. Consult an Industrial Hygienist or other trained person when you make your safety evaluation of the end product. Remember, gases and liquids have properties which can cause serious injury or death.
HAZARDOUS MATERIALS IDENTIFICATION SYSTEM

HAZARD RATINGS (continued):

HEALTH HAZARD (continued):
1 (Slight Hazard: Minor reversible Injury may occur; slightly or mildly irritating. Skin irritation: Slightly or mildly irritating. Eye irritation: Slightly or mildly irritating. Oral Toxicity LD₃₀ Rat: > 5000 mg/kg, Dermal Toxicity LD₁₀₂ Rat or Rabbit: > 100-2000 mg/kg. Inhalation Toxicity LC₂₀ 4-hrs Rat: > 2-20 mg/L; 2 (Moderate Hazard: Temporary or transitory injury may occur. Skin irritation: Moderately irritating; primary irritant; sensitizer. PI or Draize > 0, < 5. Eye irritation: Moderately irritating and/or corrosive; reversible corneal opacity; corneal involvement or irritation clearing in 21 days. Draize > 0, < 25. Oral Toxicity LD₅₀ Rat: > 50-500 mg/kg. Dermal Toxicity LD₃₀ Rat or Rabbit: > 200-1000 mg/kg. Inhalation Toxicity LC₂₀ 4-hrs Rat: > 0.5-2 mg/L; 3 (Serious Hazard: Major injury likely unless prompt action is taken and medical treatment is given; high level of toxicity; corrosive. Skin irritation: Severely irritating and/or corrosive; may destroy dermal tissue, cause skin burns, dermal necrosis. PI or Draize > 5-8 with destruction of tissue. Eye irritation: Corrosive, irreversible destruction of ocular tissue; corneal involvement or irritation persisting for more than 21 days. Draize > 80 with effects irreversible in 21 days. Oral Toxicity LD₅₀ Rat: > 1-50 mg/kg. Dermal Toxicity LD₃₀ Rat or Rabbit: > 20-200 mg/kg. Inhalation Toxicity LC₂₀ 4-hrs Rat: > 0.05-0.5 mg/L); 4 (Severe Hazard: Life-threatening; major or permanent damage may result from single or repeated exposure. Skin irritation: Not appropriate. Do not rate as a “4”, based on skin irritation alone. Eye irritation: Not appropriate. Do not rate as a “4”, based on eye irritation alone. Oral Toxicity LD₅₀ Rat: ≤ 1 mg/kg. Dermal Toxicity LD₃₀ Rat or Rabbit: ≤ 20 mg/kg. Inhalation Toxicity LC₂₀ 4-hrs Rat: ≤ 0.05 mg/L).

FLAMMABILITY HAZARD:
0 (Minimal Hazard-Materials that will not burn in air when exposure to a temperature of 815.5°C [1500°F] for a period of 5 minutes.); 1 (Slight Hazard-Materials that must be moderately heated under normal conditions to produce an ignition temperature before ignition can occur. Material require considerable pre-heating, under all ambient temperature conditions before ignition and combustion can occur. Including: Materials that will burn in air when exposed to a temperature of 815.5°C [1500°F] for a period of 5 minutes or less; Liquids, solids and semisolids having a flash point at or above 93.3°C [200°F] (e.g. OSHA Class IIIIB, or; Most ordinary combustible materials [e.g. wood, paper, etc.].); 2 (Moderate Hazard-Materials that must be moderately heated under conditions to produce rapid ignition in high ambient temperatures before ignition can occur. Materials in this degree would not, under normal conditions, form hazardous atmospheres in air, but under high ambient temperatures moderate heating may release vapor in sufficient quantities to produce hazardous atmospheres in air. Including: Liquids having a flash-point at or above 37.8°C [100°F]. Solid materials in the form of course dusts that may burn rapidly but that generally do not form explosive atmospheres; Solid materials in a fibrous or shredded form that may burn rapidly and create flash fire hazards (e.g. cotton, sisal, hemp; Solids and semisolids that readily give off flammable vapors.)};
HAZARDOUS MATERIALS IDENTIFICATION SYSTEM
HAZARD RATINGS (continued):

FLAMMABILITY HAZARD (continued):

3 (Serious Hazard) - Liquids and solids that can be ignited under almost all ambient temperature conditions. Materials in this degree produce hazardous atmospheres with air under almost all ambient temperatures, or, unaffected by ambient temperature, are readily ignited under almost all conditions, including: Liquids having a flash point below 22.8°C [73°F] and having a boiling point at or above 38°C [100°F] and below 37.8°C [100°F] [e.g. OSHA Class IB and IC]; Materials that on account of their physical form or environmental conditions can form explosive mixtures with air and are readily dispersed in air [e.g., dusts of combustible solids, mists or droplets of flammable liquids]; Materials that burn extremely rapidly, usually by reason of self-contained oxygen [e.g. dry nitrocellulose and many organic peroxides]]; 4 (Severe Hazard) - Materials that will rapidly or completely vaporize at atmospheric pressure and normal ambient temperature or that are readily dispersed in air, and which will burn readily, including: Flammable gases; Flammable cryogenic materials; Any liquid or gaseous material that is liquid while under pressure and has a flash point below 22.8°C [73°F] and a boiling point below 37.8°C [100°F] [e.g. OSHA Class IA]; Material that ignite spontaneously when exposed to air at a temperature of 54.4°C [130°F] or below [e.g. pyrophoric].

PHYSICAL HAZARD:

0 (Water Reactivity) - Materials that do not react with water. Organic Peroxides: Materials that are normally stable, even under fire conditions and will not react with water. Explosives: Substances that are Non-Explosive. Unstable Compressed Gases: No Rating. Pyrophorics: No Rating. Oxidizers: No “0” rating allowed. Unstable Reactives: Substances that will not polymerize, decompose, condense or self-react.; 1 (Water Reactivity) - Materials that change or decompose upon exposure to moisture. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. These materials may react with water, but will not release energy. Explosives: Division 1.5 & 1.6 substances that are very insensitive explosives or that do not have a mass explosion hazard. Compressed Gases: Pressure below OSHA definition. Pyrophorics: No Rating. Oxidizers: Packaging Group III; Solids: any material that in either concentration tested exhibits a mean burning time less than or equal to the mean burning time of a 3.7 potassium bromate/cellulose mixture and the criteria for Packing Group I and II are not met. Liquids: any material that exhibits a mean pressure rise time less than or equal to the pressure rise time of a 1:1 nitric acid (65%)/cellulose mixture and the criteria for Packing Group I and II are not met. Unstable Reactives: Substances that may decompose or condense or self-react, but only under conditions of high temperature and/or pressure and have little or no potential to cause significant heat generation or explosive hazard. Substances that readily undergo hazardous polymerization in the absence of inhibitors.; 2 (Water Reactivity) - Materials that may react violently with water. Organic Peroxides: Materials that, in themselves, are normally unstable and will readily undergo violent chemical change but will not detonate. These materials may also react violently with water. Explosives: Division 1.4 – Explosive substances where the explosive effect are largely confined to the package and no projection of fragments of appreciable size or range are expected. An external fire must not cause virtually instantaneous explosion of almost the entire contents of the package. Compressed Gases: Pressurized and meet OSHA definition. Pyrophorics: No Rating. Oxidizers: Packaging Group II Solids: any material that, either in concentration tested, exhibits a mean burning time of less than or equal to the mean burning time of a 2:3 potassium bromate/cellulose mixture and the criteria for Packing Group I are not met. Liquids: any material that exhibits a mean pressure rise time less than or equal to the pressure rise of a 1:1 aqueous sodium chloride solution (40%)/cellulose mixture and the criteria for Packing Group I are not met.

HAZARDOUS MATERIALS IDENTIFICATION SYSTEM
HAZARD RATINGS (continued):

PHYSICAL HAZARD (continued):

2 (continued) - Unstable Reactives: Substances that may polymerize, decompose, condense, or self-react at ambient temperature and/or pressure, but have a low potential for significant heat generation or explosion. Substances that readily form explosive mixtures with air or oxygen at room temperature. 3 (Water Reactivity) - Materials that may form explosive reactions with water. Organic Peroxides: Materials that are capable of detonation or explosive reaction, but require a strong initiating source, or must be heated under confinement before initiation; or materials that react explosively with water. Explosives: Division 1.2 – Explosive substances that have a fire hazard and either a minor blast hazard or a minor projection hazard or both, but do not have a mass explosion hazard. Compressed Gases: Pressure > 514.7 psi absolute at 21.1°C (70°F) [500 psig]. Pyrophorics: No Rating. Oxidizers: Packaging Group I Solids: any material that, in either concentration tested, exhibits a mean burning time less than the mean burning time of a 3:2 potassium bromate/cellulose mixture. Liquids: Any material that spontaneously ignites when mixed with cellulose in a 1:1 ratio, or which exhibits a mean pressure rise time less than the pressure rise time of a 1:1 perchloric acid (50%)/cellulose mixture. Unstable Reactives: Substances that may polymerize, decompose, condense or self-react at ambient temperature and/or pressure and have a moderate potential to cause significant heat generation or explosion.; 4 (Water Reactivity) - Materials that react explosively with water without requiring heat or confinement. Organic Peroxides: Materials that are readily capable of detonation or explosive decomposition at normal temperature and pressures. Explosives: Division 1.1 & 1.2-explosive substances that have a mass explosion hazard or have a projection hazard. A mass explosion is one that affects almost the entire load instantaneously. Compressed Gases: No Rating. Pyrophorics: Add to the definition of Flammability “4”. Oxidizers: No “4” rating. Unstable Reactives: Substances that may polymerize, decompose, condense or self-react at ambient temperature and/or pressure and have a high potential to cause significant heat generation or explosion."

NATIONAL FIRE PROTECTION ASSOCIATION HAZARD RATINGS:

HAZARD RATING: 0 (material that on exposure under fire conditions would offer no hazard beyond that of ordinary combustible materials); 1 (materials that on exposure under fire conditions could cause irritation or minor residual injury); 2 (materials that on irritation or minor residual injury would not cause temporary incapacitation or possible residual injury); 3 (materials that can on short exposure cause serious temporary or residual injury); 4 (materials that under very short exposure could cause death or major residual injury).

FLAMMABILITY HAZARD: 0 (materials that will not burn under typical fire conditions, including intrinsically noncombustible materials such as concrete, stone, and sand. 1 Materials that must be moderated or protected under ambient temperature conditions, before ignition and combustion can occur. Materials in this degree require considerable preheating, under all ambient temperature conditions, before ignition and combustion can occur 2 Materials that must be moderately heated or exposed to relatively high ambient temperatures before ignition can occur. Materials in this degree would not under normal conditions form hazardous atmospheres with air, but under high ambient temperatures or under moderate heating could release vapor in sufficient quantities to produce hazardous atmospheres with air. 3 Liquids and solids that can be ignited under almost all ambient temperature conditions. Materials in this degree produce hazardous atmospheres with air under almost all ambient temperatures or, though unaffected by ambient temperatures, are readily ignited under almost all conditions. 4 Materials that will rapidly or completely vaporize at atmospheric pressure and normal ambient temperature or that are readily dispersed in air and will burn readily.)
16. OTHER INFORMATION (Continued)

DEFINITIONS OF TERMS (Continued)

NATIONAL FIRE PROTECTION ASSOCIATION HAZARD RATINGS (continued):

INSTABILITY HAZARD: 0 Materials that in themselves are normally stable, even under fire conditions. 1 Materials that in themselves are normally stable, but that can become unstable at elevated temperatures and pressures. 2 Materials that readily undergo violent chemical change at elevated temperatures and pressures. 3 Materials that in themselves are capable of detonation or explosive decomposition or explosive reaction, but that require a strong initiating source or that must be heated under confinement before initiation. 4 Materials that in themselves are readily capable of detonation or explosive decomposition or explosive reaction at normal temperatures and pressures.

FLAMMABILITY LIMITS IN AIR: Much of the information related to fire and explosion is derived from the National Fire Protection Association (NFPA). Flash Point - Minimum temperature at which a liquid gives off sufficient vapors to form an ignitable mixture with air. Autoignition Temperature: The minimum temperature required to initiate combustion in air with no other source of ignition. LEL - the lowest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source. UEL - the highest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source.

TOXICOLOGICAL INFORMATION:

Human and Animal Toxicology: Possible health hazards as derived from human data, animal studies, or from the results of studies with similar compounds are presented. Definitions of some terms used in this section are: LD₅₀ - Lethal Dose (solids & liquids) which kills 50% of the exposed animals; LC₅₀ - Lethal Concentration (gases) which kills 50% of the exposed animals; ppm concentration expressed in parts of material per million parts of air or water; mg/m³ quantity of material, by weight, administered to a test subject, based on their body weight in kg. Other measures of toxicity include TDLo, the lowest dose to cause a symptom and TCLo the lowest concentration to cause a symptom; TD₅₀, LD₅₀, and LD₅₀, or TC, TC₀, LCLo, and LCo, the lowest dose (or concentration) to cause lethal or toxic effects. Cancer Information: The sources are: IARC - the International Agency for Research on Cancer; NTP - the National Toxicology Program; RTECS - the Registry of Toxic Effects of Chemical Substances; OSHA and CAL/OSHA. IARC and NTP rate chemicals on a scale of decreasing potential to cause human cancer with rankings from 1 to 4. Subrankings (2A, 2B, etc.) are also used. Other Information: BEI - ACGIH Biological Exposure Indices, represent the levels of determinants which are most likely to be observed in specimens collected from a healthy worker who has been exposed to chemicals to the same extent as a worker with inhalation exposure to the TLV.

ECOLOGICAL INFORMATION:

BCF = Bioconcentration Factor, which is used to determine if a substance will concentrate in lifeforms which consume contaminated plant or animal matter; EC is the Effect Concentration in water; EC₅₀ is the Effect Concentration for 50% of the organisms exposed; NOEC is the No Observed Effect Concentration; MATC is the Maximum Acceptable Toxicant Concentration; NOLC is the No Observed Lethal Concentration; TL₅₀ = median threshold limit; Coefficient of Oil/Water Distribution is represented by log Kₒₕ or log Kₒₕ and is used to assess a substance's behavior in the environment.

REGULATORY INFORMATION:

U.S. and CANADA:

ACGIH: American Conference of Governmental Industrial Hygienists, a professional association which establishes exposure limits. This section explains the impact of various laws and regulations on the material. EPA is the U.S. Environmental Protection Agency. NIOSH is the National Institute of Occupational Safety and Health, which is the research arm of the U.S. Occupational Safety and Health Administration (OSHA). WHMIS is the Canadian Workplace Hazardous Materials Information System. DOT and TC are the U.S. Department of Transportation and the Transport Canada, respectively. Superfund Amendments and Reauthorization Act (SARA); the Canadian Domestic/Non-Domestic Substances List (DSL/NDSSL); the U.S. Toxic Substance Control Act (TSCA); Marine Pollutant status according to the DOT; the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund); and various state regulations. This section also includes information on the precautionary warnings which appear on the material's package label. OSHA - U.S. Occupational Safety and Health Administration.