1. PRODUCT IDENTIFICATION

CHEMICAL NAME; CLASS: NITROGEN/CHLORINE GAS MIXTURE
CHEMICAL FAMILY: Inorganic Gas Mixture
PRODUCT USE: Research Gas

MANUFACTURER
MATHESON TRI-GAS, INC.
959 ROUTE 46 EAST
PARSIPPANY, NJ 07054-0624
USA
Phone: 973/257-1100

EMERGENCY PHONE:
CHEMTREC (U.S. DOMESTIC): 1-800-424-9300
CHEMTREC INTERNATIONAL: 1-703-527-3887
CANUTEC (CANADA): 1-613-996-6666

2. COMPOSITION and INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>CAS #</th>
<th>mole %</th>
<th>EXPOSURE LIMITS IN AIR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACGIH-TLV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TWA ppm</td>
</tr>
<tr>
<td>Chlorine</td>
<td>7782-50-5</td>
<td>1-<5.86</td>
<td>0.5</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>7727-37-9</td>
<td>Balance</td>
<td>There are no specific exposure limits for Nitrogen. Oxygen levels should be maintained above 19.5%.</td>
</tr>
</tbody>
</table>

NOTE: All WHMIS required information is included. It is located in appropriate sections based on the ANSI Z400.1-1998 format. This product has been classified in accordance with the hazard criteria of the CPR and the MSDS contains all the information required by the CPR. See Section 16 for Definitions of Terms Used.
3. HAZARD IDENTIFICATION

EMERGENCY OVERVIEW: This is a greenish, non-flammable gas mixture with a distinct, irritating odor of Chlorine. Inhalation of this gas mixture may be severely irritating, due to the presence of Chlorine. In addition, releases of this gas mixture can cause a hazard of asphyxiation by displacement of oxygen. This gas mixture presents no hazard of flammability or reactivity. Flame or high temperature impinging on a localized area of the cylinder can cause cylinder to rupture violently or explosively. Extreme caution must be used when responding to spills. Persons who respond to releases of this product must protect themselves from inhalation of Chlorine.

SYMPTOMS OF OVER-EXPOSURE BY ROUTE OF EXPOSURE: The most significant route of over-exposure for this product is by inhalation.

INHALATION: Inhalation of this gas mixture, may lead to irritation of the nose and throat. Additionally, over-exposures to Chlorine can cause the following health effects: coughing, labored breathing, sore throat, and potentially fatal lung disorders (chemical pneumonitis and pulmonary edema). Repeated chlorine-overexposures by inhalation can result in emphysema and erosion of teeth. The symptoms associated with specific Chlorine concentrations are as follows:

<table>
<thead>
<tr>
<th>CONCENTRATION OF CHLORINE</th>
<th>OBSERVED EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06 ppm:</td>
<td>Odor threshold.</td>
</tr>
<tr>
<td>3 ppm:</td>
<td>Irritation of the eyes and mucous membranes.</td>
</tr>
<tr>
<td>15 ppm:</td>
<td>Immediate irritation of the throat.</td>
</tr>
<tr>
<td>50 ppm:</td>
<td>A dangerous health hazard, even for short periods of time. Prolonged exposure may result in death.</td>
</tr>
<tr>
<td>1000 ppm:</td>
<td>Potentially fatal after a short exposure.</td>
</tr>
</tbody>
</table>

In addition, high concentrations of this gas mixture can cause an oxygen-deficient environment, especially if released in a poorly-ventilated area (e.g., an enclosed or confined space). Individuals breathing such an atmosphere may experience symptoms which include headaches, ringing in ears, dizziness, drowsiness, unconsciousness, nausea, vomiting, and depression of all the senses. Under some circumstances of overexposure, death may occur. The effects associated with various levels of oxygen are as follows:

<table>
<thead>
<tr>
<th>CONCENTRATION OF OXYGEN</th>
<th>OBSERVED EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-16% Oxygen:</td>
<td>Breathing and pulse rate increase, muscular coordination slightly disturbed.</td>
</tr>
<tr>
<td>10-14% Oxygen:</td>
<td>Emotional upset, abnormal fatigue, disturbed respiration.</td>
</tr>
<tr>
<td>6-10% Oxygen:</td>
<td>Nausea, vomiting, collapse, or loss of consciousness.</td>
</tr>
<tr>
<td>Below 6%:</td>
<td>Convulsive movements, possible respiratory collapse, and death.</td>
</tr>
</tbody>
</table>

CONTACT WITH SKIN or EYES: Due to the presence of Chlorine in this gas mixture, skin over-exposures to this product may lead to burns or dermatitis (red, cracked, irritated skin), depending upon concentration and duration of exposure. Contact of the product with the eyes can cause pain, redness, and prolonged exposure could cause blindness. Contact with rapidly expanding gases (which are released under high pressure) may cause frostbite.

SKIN ABSORPTION: No component of this gas mixture presents a hazard of skin absorption.

HEALTH EFFECTS OR RISKS FROM EXPOSURE: Over-exposure to this gas mixture may cause the following health effects:

ACUTE: This gas mixture may be severely irritating and may redden and damage eyes, skin, mucous membranes, and any other exposed tissue. If this product is inhaled, irritation of the respiratory system may occur, with coughing, breathing difficulty, and the development of lung disorders. Additionally, another significant hazard associated with this gas mixture is inhalation of oxygen-deficient atmospheres. Symptoms of oxygen deficiency include ringing in ears, headaches, shortness of breath, wheezing, dizziness, indigestion, and nausea. At high concentrations, unconsciousness or death may occur.
3. HAZARD IDENTIFICATION (Continued)

CHRONIC: Persistent irritation may result from repeated exposures to this gas mixture. Repeated chlorine-overexposures by inhalation can result in emphysema and erosion of tooth enamel.

TARGET ORGANS: ACUTE: Respiratory system. CHRONIC: Skin, respiratory system.

HMIS RATING: HEALTH = 3 FLAMMABILITY = 0 REACTIVITY = 0
Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe

4. FIRST-AID MEASURES

GENERAL INFORMATION: Remove to fresh air, as quickly as possible. Only trained personnel should administer supplemental oxygen and/or cardio-pulmonary resuscitation, if necessary. Seek medical attention immediately.

SKIN EXPOSURE: If release of this gas mixture has resulted in frostbite, warm affected area slowly. Seek immediate medical attention.

EYE EXPOSURE: If release of this gas mixture has affected the eyes, seek immediate medical attention.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: Pre-existing acute or chronic respiratory conditions may be aggravated by overexposure to this gas mixture.

RECOMMENDATIONS TO PHYSICIANS: Administer oxygen and continue even after spontaneous breathing is established. If pulmonary edema ensues, treat accordingly.

5. FIRE-FIGHTING MEASURES

FLASH POINT: Not applicable; non-flammable gas.
AUTOIGNITION TEMPERATURE: Not applicable.
FLAMMABLE LIMITS (in air by volume, %): Not applicable.
FIRE EXTINGUISHING MATERIALS: Use fire-extinguishing material appropriate for surrounding materials. Use water spray to cool fire-exposed structures, cylinders and equipment.
UNUSUAL FIRE AND EXPLOSION HAZARD: None; this gas is non-flammable.
EXPLOSION SENSITIVITY TO MECHANICAL IMPACT: Not sensitive.
EXPLOSION SENSITIVITY TO STATIC DISCHARGE: Not sensitive.
SPECIAL FIRE-FIGHTING PROCEDURES: Evacuate all personnel from danger area. Immediately cool cylinders with water spray from maximum distance, to avoid danger of cylinder rupture. Incipient fire responders should wear eye protection. Structural fire fighters must wear Self-Contained Breathing Apparatus and full protective equipment. When cool, move cylinders from fire area if this can be done without risk to firefighters. Other information for pre-planning can be found in the North American Emergency Response Guidebook (Guide Number 126).

6. ACCIDENTAL RELEASE MEASURES

LEAK RESPONSE: Evacuate immediate area. Uncontrolled releases should be responded to by trained personnel using pre-planned procedures. Proper protective equipment, should be used in the event of a significant release from a single cylinder. Use only non-sparking tools. Call CHEMTREC (1-800-424-9300) for emergency assistance. Or if in Canada, call CANUTEC (613-996-6666).

Attempt to close the main source valve prior to entering the area. If this does not stop the release (or if it is not possible to reach the valve), allow the gas to release in-place or remove it to a safe area and allow the gas to be released there. Protect personnel attempting to shut-off with water spray. Monitor the surrounding area for the level of Chlorine and Oxygen. The atmosphere must have at least 19.5 percent Oxygen before non-emergency personnel can be allowed in the area without Self-Contained Breathing Apparatus.
7. HANDLING and USE

WORK PRACTICES AND HYGIENE PRACTICES
Do not eat or drink while handling chemicals.

Be aware of all potential exposure symptoms; exposures to a fatal oxygen-deficient atmosphere could occur without any significant warning symptoms.

All work operations should be monitored in such a way that emergency personnel can be immediately contacted in the event of a release.

Workers who handle this gas mixture should wear protective clothing, as listed in Section 8 (Exposure Controls and Personal Protection).

If ventilation controls are not adequate to provide sufficient oxygen content, proper respiratory protection equipment should be provided and workers using such equipment should be carefully trained in its operation and limitations.

Precautions must always be taken to prevent suck-back of foreign materials into the cylinder by using a check-valve, or vacuum break, since suck-back may cause dangerous pressure changes within the cylinder.

STORAGE AND HANDLING PRACTICES:
Cylinders should be stored upright and be firmly secured to prevent falling or being knocked-over. Cylinders can be stored in the open, but in such cases, should be protected against extremes of weather and from the dampness of the ground to prevent rusting. Cylinders should be stored in dry, well-ventilated areas away from sources of heat or ignition. Do not allow the area where cylinders are stored to exceed 52°C (125°F).

SPECIAL PRECAUTIONS FOR HANDLING GAS CYLINDERS: Compressed gases can present significant safety hazards. The following rules are applicable to work situations in which cylinders are being used.

Before Use: Move cylinders with a suitable hand-truck. Do not drag, slide or roll cylinders. Do not drop cylinders or permit them to strike each other. Secure cylinders firmly. Leave the valve protection cap (where provided) in-place until cylinder is ready for use.

During Use: Use designated CGA fittings and other support equipment. Do not use adapters. Do not use oils or grease on gas-handling fittings or equipment. Immediately contact the supplier if there are any difficulties associated with operating the cylinder valve. Never insert an object (e.g wrench, screwdriver, pry bar, etc.) into valve cap openings. Doing so may damage the valve, causing a leak to occur. Use an adjustable strap wrench to remove over-tight or rusted caps. Never strike an arc, on a compressed gas cylinder or make a cylinder part of an electric circuit.

After Use: Close main cylinder valve. Replace valve protection cap. Close valve after each use and when empty. Mark empty cylinders "EMPTY".

PROTECTIVE PRACTICES DURING MAINTENANCE OF CONTAMINATED EQUIPMENT: Refer to current CGA Guidelines for information on protective practices during maintenance of contaminated equipment.

8. EXPOSURE CONTROLS - PERSONAL PROTECTION

VENTILATION AND ENGINEERING CONTROLS: Use with adequate, ventilation to ensure compliance with exposure limits described in Section 2 (Composition and Information on Ingredients). Local exhaust ventilation is preferred, because it prevents dispersion of this gas mixture into the work place by eliminating it at its source. If appropriate, install automatic monitoring equipment to detect the level of Oxygen and Chlorine.

RESPIRATORY PROTECTION: Maintain the Oxygen level above 19.5% in the workplace. If necessary, use only respiratory protection authorized in the U.S. Federal OSHA Respiratory Protection Standard (29 CFR 1910.134), or equivalent U.S. State standards and Canadian CSA Standard Z94.4-93. Oxygen levels below 19.5% are considered IDLH by OSHA. In such atmospheres, use of a full-facepiece pressure/demand SCBA or a full facepiece, supplied air respirator with auxiliary self-contained air supply is required under OSHA’s Respiratory Protection Standard (1910.134-1998).
8. EXPOSURE CONTROLS - PERSONAL PROTECTION (Continued)

RESPIRATORY PROTECTION (continued): The following are NIOSH respiratory protection guidelines for the Chlorine component of this gas mixture. These are presented as this component presents a risk of toxicity in this mixture.

CHLORINE

<table>
<thead>
<tr>
<th>CONCENTRATION</th>
<th>RESPIRATORY EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 5 ppm</td>
<td>Use a chemical cartridge respirator or a Supplied Air Respirator (SAR).</td>
</tr>
<tr>
<td>Up to 10 ppm</td>
<td>USE a SAR in the continuous flow mode, or a Powered Air Purifying Respirator (PAPR) with chlorine cartridges, or a gas mask with a chlorine canister, or a SCBA.</td>
</tr>
<tr>
<td>Entry into an Area of Unknown Chlorine Concentration:</td>
<td>Use an SCBA or positive pressure, full-faced SAR with an auxiliary SCBA.</td>
</tr>
<tr>
<td>Escape from a Chlorine Release:</td>
<td>Use a gas mask or mouth-piece respirator with chlorine cartridges or SCBA should be used.</td>
</tr>
</tbody>
</table>

EYE PROTECTION: Splash goggles or safety glasses. If necessary, refer to U.S. OSHA 29 CFR 1910.133, or appropriate Canadian Standards.

BODY PROTECTION: Use body protection appropriate for task. Transfer of large quantities under pressure may require protective equipment appropriate to the task. If a hazard of injury to the feet exists due to falling objects, rolling objects, where objects may pierce the soles of the feet or where employee’s feet may be exposed to electrical hazards, foot protection should be used, as described in U.S. OSHA 29 CFR 1910.136.

9. PHYSICAL and CHEMICAL PROPERTIES

The following information is for Nitrogen, the main component of this gas mixture:

- **GAS DENSITY:** 0.072 lb/cu ft (1.153 kg/m³)
- **SPECIFIC GRAVITY (air = 1):** 0.967
- **SOLUBILITY IN WATER:** 0.023
- **EXPANSION RATIO:** Not applicable.
- **ODOR THRESHOLD:** Not applicable.
- **VAPOR PRESSURE (psia):** Not applicable.
- **COEFFICIENT WATER/OIL DISTRIBUTION:** Not applicable.
- **EVAPORATION RATE (nBuAc = 1):** Not applicable.
- **FREEZING POINT:** -209.9°C (-345.8°F)
- **BOILING POINT (at 1 atmos.):** -195.8°C (-320.4°F)
- **SPECIFIC VOLUME (ft³/lb):** 13.89
- **MOLECULAR WEIGHT:** 28.01

The following information is pertinent to this product:

- **APPEARANCE, ODOR AND COLOR:** This is a greenish, gas mixture with a distinct, irritating odor of chlorine.
- **HOW TO DETECT THIS SUBSTANCE (warning properties):** The odor and color of this gas mixture may be distinctive warning properties associated with this product. In terms of leak detection, fittings and joints can be painted with a soap solution to detect leaks, which will be indicated by a bubble formation.

10. STABILITY and REACTIVITY

- **STABILITY:** Stable at standard temperatures and pressures.
- **DECOMPOSITION PRODUCTS:** The components of this gas mixture do not decompose, per se, but can react with other compounds in the heat of a fire.
- **MATERIALS WITH WHICH SUBSTANCE IS INCOMPATIBLE:** Chlorine is not compatible with most metals (except titanium). The Nitrogen component is inert.
- **HAZARDOUS POLYMERIZATION:** Will not occur.
- **CONDITIONS TO AVOID:** Contact with incompatible materials. Cylinders exposed to high temperatures or direct flame can rupture or burst.
11. TOXICOLOGICAL INFORMATION

TOXICITY DATA: Nitrogen is a simple asphyxiant (SA), which act to displace oxygen in the environment. No toxicity data are available. The following are toxicity data for the Chlorine component of this gas mixture.

CHLORINE:
- LC50 (inhalation, human) = 2530 mg/m³/30 minutes; pulmonary effects.
- LC50 (inhalation, human) = 500/5 minutes
- LC50 (inhalation, rat) = 293 ppm/1 hour
- LC50 (inhalation, dog) = 800 ppm/30 minutes
- LC50 (inhalation, cat) = 660 ppm/4 hours
- LC50 (inhalation, rabbit) = 660 ppm/4 hours
- LC50 (inhalation, mouse) = 137 ppm/1 hour

Note: Chlorine produces no known systemic effects. All symptoms and signs result directly or indirectly from the local irritant action of Chlorine.

CHLORINE (continued):
- LCLo (inhalation, dog) = 50 ppm/5 minutes
- LCLo (inhalation, mouse) = 5 ppm/1 minute

CHLORINE (continued):
- LCLo (inhalation, cat) = 2 ppm/n/a
- LCLo (inhalation, rabbit) = 2 ppm/n/a
- LCLo (inhalation, mouse) = 1 ppm/n/a
- LCLo (inhalation, dog) = 0.5 ppm/n/a
- LCLo (inhalation, cat) = 0.2 ppm/n/a
- LCLo (inhalation, rabbit) = 0.1 ppm/n/a
- LCLo (inhalation, mouse) = 0.05 ppm/n/a
- LCLo (inhalation, dog) = 0.02 ppm/n/a
- LCLo (inhalation, cat) = 0.01 ppm/n/a
- LCLo (inhalation, rabbit) = 0.005 ppm/n/a
- LCLo (inhalation, mouse) = 0.002 ppm/n/a

SUSPECTED CANCER AGENT: The components of this gas mixture are not found on the following lists: FEDERAL OSHA Z LIST, IARC, NTP, CAL/OSHA, and therefore is not considered to be, nor suspected to be a cancer-causing agent by these agencies.

IRRITANCY OF PRODUCT: Due to the presence of Chlorine, this gas mixture may be moderately to severely irritating to contaminated tissue.

SENSITIZATION TO THE PRODUCT: The components of this product are not known to be skin or respiratory sensitzers.

REPRODUCTIVE TOXICITY INFORMATION: Listed below is information concerning the effects of the components of this gas mixture on the human reproductive system.

Mutagenicity: The components of this gas mixture are not reported to cause mutagenic effects in humans.

The Chlorine component of this gas mixture has been reported to cause mutagenic effects in specific human tissues during experimental studies with exposures at relatively high doses.

CHLORINE:
- Microsomal Mutagenicity Assay-Salmonella typhimurium 1800 mg/L
- Cytogenic Analysis System test (human, lymphocyte); 20 ppm

Embryotoxicity: The components of this gas mixture are not reported to cause embryotoxic effects in humans.

Teratogenicity: The components of this gas mixture are not reported to cause teratogenic effects in humans.

Reproductive Toxicity: The components of this gas mixture are not reported to cause adverse reproductive effects in humans. The following data are available for the Chlorine component.

CHLORINE:
- Sperm Morphology-Mouse-Oral 20 mg/kg/5 days-continuous

BIOLOGICAL EXPOSURE INDICES (BEIs): Currently, there are no Biological Exposure Indices (BEIs) determined for the components of this gas mixture.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL STABILITY: This gas mixture will be dissipated rapidly in well-ventilated areas.

EFFECT OF MATERIAL ON PLANTS or ANIMALS: Large releases of this gas mixture may be harmful to plants and animals.

EFFECT OF CHEMICAL ON AQUATIC LIFE: A release of large quantity may be harmful to an aquatic environment in specific conditions that allow the gas to settle to a body of water. The following aquatic toxicity data are available for the Chlorine component.

CHLORINE:
- LC50 (Daphnia magna/water flea) = 0.097 mg/L 30 minutes
- LC50 (Daphnia magna/water flea) = 0.063 mg/L 60 minutes
- LC50 (Gambusia affinis/mosquito fish) = 1.59 mg/L 30 minutes
- LC50 (Gambusia affinis/mosquito fish) = 0.84 mg/L 60 minutes
- TLM (Grass shrimp) = 22 mg/L/96 hours
- TLM (Ocean spot) = 0.14 mg/L/24 hours; stress
- TLM (Daphnia magna/water flea) = 0.017 mg/L 46 hours
- LC50 (Oncorhyncus kisutch/Coho salmon) = 208μg/L 60 minutes
- TLM (Keratella cochlearis) = 0.019 mg/L/4 hours
- LC50 (Daphnia pulex) = 0.49 mg/L/96 hours
- LC50 (Micropterus salmoides, largemouth bass) = 0.74 mg/L/24 hours
- LC50 (Salmo gairdnerii, rainbow trout) = 0.08 mg/L/168 hours
- TLM (Carassius auratus, goldfish) = 0.17 mg/L/24 hours
- LC50 (Lepomis macrochirus, bluegill sunfish) = 0.44 mg/L/96 hours
- LC50 (Lepomis cyanellus, green sunfish) = 3.0 mg/L/24 hours
- Carp: 1.5-0.2 mg/L/12-16 days; 25% killed.

CHLORINE (continued):
- LC50 (Daphnia pulex) = 0.49 mg/L/96 hours
- LC50 (Micropterus salmoides, largemouth bass) = 0.74 mg/L/24 hours
- LC50 (Salmo gairdnerii, rainbow trout) = 0.08 mg/L/168 hours
- TLM (Carassius auratus, goldfish) = 0.17 mg/L/24 hours
- LC50 (Lepomis macrochirus, bluegill sunfish) = 0.44 mg/L/96 hours
- LC50 (Pimephales promelas, fathead minnow) = 0.1 mg/L; 96 hr
- LC50 (Lepomis cyanellus, green sunfish) = 3.0 mg/L/24 hours
- Carp: 1.5-0.2 mg/L/12-16 days; 25% killed.
13. DISPOSAL CONSIDERATIONS

PREPARING WASTES FOR DISPOSAL: Waste disposal must be in accordance with appropriate Federal, State, and local regulations. Return cylinders with any residual product to Matheson Tri-Gas. Do not dispose of locally.

14. TRANSPORTATION INFORMATION

THIS MATERIAL IS HAZARDOUS AS DEFINED BY 49 CFR 172.101 BY THE U.S. DEPARTMENT OF TRANSPORTATION.

PROPER SHIPPING NAME: Compressed gases, n.o.s. (Chlorine, Nitrogen)
HAZARD CLASS NUMBER and DESCRIPTION: 2.2 (Non-Flammable Gas)
UN IDENTIFICATION NUMBER: UN 1956
PACKING GROUP: Not Applicable
D.O.T HAZARD LABEL: Class 2.2 (Non-Flammable Gas)
NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER (2004): 126

MARINE POLLUTANT: Chlorine, a component of this gas mixture, is designated by the Department of Transportation to be a Marine Pollutant (49 CFR 172.101, Appendix B). Refer to 49 CFR 172.322 for regulations regarding markings associated with this product.

SPECIAL SHIPPING INFORMATION: Cylinders should be transported in a secure position, in a well-ventilated vehicle. The transportation of compressed gas cylinders in automobiles or in closed-body vehicles present serious safety hazards and should be discouraged.

NOTE: Shipment of compressed gas cylinders which have not been filled with the owner’s consent is a violation of Federal law (49 CFR, Part 173.301 (b).

TRANSPORT CANADA TRANSPORTATION OF DANGEROUS GOODS REGULATIONS: This gas mixture is considered as dangerous goods, per regulations of Transport Canada.

PROPER SHIPPING NAME: Compressed gas, toxic, flammable n.o.s. (Nitrogen, Chlorine)
HAZARD CLASS NUMBER and DESCRIPTION: 2.2 (Non-Flammable Gas)
UN IDENTIFICATION NUMBER: UN 1956
PACKING GROUP: Not Applicable
HAZARD LABEL: 2.2 (Non-Flammable Gas)
SPECIAL PROVISIONS: None
EXPLOSIVE LIMIT AND LIMITED QUANTITY INDEX: 0.125
ERAP INDEX: None
PASSENGER CARRYING SHIP INDEX: None
PASSENGER CARRYING ROAD VEHICLE OR PASSENGER CARRYING RAILWAY VEHICLE INDEX: 75
NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER (2004): 126

NOTE: Shipment of compressed gas cylinders via Public Passenger Road Vehicle is a violation of Canadian law (Transport Canada Transportation of Dangerous Goods Act, 1992).

SPECIAL SHIPPING INFORMATION: Cylinders should be transported in a secure position, in a well-ventilated vehicle. The transportation of compressed gas cylinders in automobiles or in closed-body vehicles present serious safety hazards and should be discouraged.

NOTE: Shipment of compressed gas cylinders which have not been filled with the owner’s consent is a violation of Federal law (49 CFR, Part 173.301 (b).
15. REGULATORY INFORMATION

ADDITIONAL U.S. REGULATIONS:

U.S. SARA REPORTING REQUIREMENTS: The Chlorine component of this gas mixture is subject to the reporting requirements of Sections 302, 304 and 313 of Title III of the Superfund Amendments and Reauthorization Act, as follows:

<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>SARA 302 (40 CFR 355, Appendix A)</th>
<th>SARA 304 (40 CFR Table 302.4)</th>
<th>SARA 313 (40 CFR 372.65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

U.S. SARA THRESHOLD PLANNING QUANTITY: Chlorine = 100 lbs (45.4 kg)

U.S. SARA HAZARD CATEGORIES (SECTION 311/312, 40 CFR 370-21): ACUTE: Yes; CHRONIC: Yes; FIRE: No; REACTIVE: No; SUDDEN RELEASE: Yes

U.S. TSCA INVENTORY STATUS: Components of this product are listed on the TSCA Inventory.

U.S. CERCLA REPORTABLE QUANTITY (RQ): Chlorine = 10 lb (4.5 kg)

OTHER U.S. FEDERAL REGULATIONS: Chlorine is subject to the reporting requirements of CFR 29 1910.1000. Chlorine is listed on Table Z.1. Depending on specific operations involving the use of this product, the regulations of the Process Safety Management of Highly Hazardous Chemicals may be applicable (29 CFR 1910.119). Under this regulation Chlorine is listed in Appendix A. Under this regulation, the threshold quantity is 1500 lbs. Chlorine is subject to the reporting requirements of Section 112(r) of the Clean Air Act. The Threshold Quantity of Chlorine is 2500 lb (1135 kg). Nitrogen is not listed as a Regulated Substance, per 40 CFR, Part 68, of the Risk Management for Chemical Releases. Chlorine is listed under this regulation in Table 1 as a Regulated Substance (Toxic Substance), in quantities of 2500 lbs or greater.

CALIFORNIA SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT (PROPOSITION 65): No component of this product is on the California Proposition 65 lists.

LABELING: Cylinders of this gas mixture should be labeled for precautionary information per the guidelines of the CGA. Refer to the CGA for further information.

ADDITIONAL CANADIAN REGULATIONS:

CANADIAN DSL/NDSL INVENTORY STATUS: The components of this product are listed on the DSL Inventory.

OTHER CANADIAN REGULATIONS: Not applicable.

CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA) PRIORITIES SUBSTANCES LISTS: The components of this product are not on the CEPA Priorities Substances Lists.

CANADIAN WHMIS SYMBOLS: This gas mixture would be categorized as a Controlled Product, Hazard Classes: A (compressed gas), and D2B (Materials Causing Other Toxic Effects - Acute and Chronic Toxic Effects), The following symbols are required for WHMIS compliance for this gas mixture.
PELs and the June, 1993 Air Contaminants Rule (Federal Register may indicate a trend, they are not sufficient for final evaluation.

Limits. This exposure value means exactly the same as a TLV, except that it is enforceable by OSHA.

limits. This exposure value means exactly the same as a TLV, except that it is enforceable by OSHA.

Values in the workplace. MAK: National Institute for Occupational Safety and Health Maximum Concentration

Further information can be found in the following pamphlets published by: Compressed Gas Association Inc. (CGA), 421 Walney Road, 5th Floor, Chantilly, VA 20151. Telephone: (703) 788-2700, Fax: (703) 961-1831.

Safe Handling of Compressed Gases in Containers” (P-1, 1999)

Safe Handling and Storage of Compressed Gases” (AV-1, 1999)

“Handbook of Compressed Gases” (1992)

PREPARED BY: CHEMICAL SAFETY ASSOCIATES, Inc.
PO Box 3519, La Mesa, CA 91944-3519
800/441-3365

DEFINITIONS OF TERMS

A large number of abbreviations and acronyms appear on a MSDS. Some of these which are commonly used include the following:

CAS #: This is the Chemical Abstract Service Number that uniquely identifies each constituent.

EXPOSURE LIMITS IN AIR:

CEILING LEVEL: The concentration that shall not be exceeded during any part of the working exposure.

DFG MAK Pregnancy Risk Group Classification: Group A: A risk of damage to the developing embryo or fetus has been unequivocally demonstrated. Exposure of pregnant women can lead to damage of the developing organism, even when MAK and BAT (Biological Tolerance Value for Working Materials) values are observed. Group B: Currently available information indicates a risk of damage to the developing embryo or fetus must be considered to be probable. Damage to the developing organism cannot be excluded when pregnant women are exposed, even when MAK and BAT values are observed. Group C: There is no reason to fear a risk of damage to the developing embryo or fetus when MAK and BAT values are observed. Group D: Classification in one of the groups A-C is not yet possible because, although the data available may indicate a trend, they are not sufficient for final evaluation.

LOQ: Limit of Quantitation.

MAC: Federal Republic of Germany Maximum Concentration Values in the workplace.

NE: Not Established. When no exposure guidelines are established, an entry of NE is made for reference.

NIC: Notice of Intended Change.

NIOSH CEILING: The exposure that shall not be exceeded during any part of the workday. If instantaneous monitoring is not feasible, the ceiling shall be assumed as a 15-minute TWA exposure (unless otherwise specified) that shall not be exceeded at any time during a workday.

NIOSH RELs: NIOSH’s Recommended Exposure Limits.

PEL-Permissible Exposure Limit: OSHA’s Permissible Exposure Limits. This exposure value means exactly the same as a TLV, except that it is enforceable by OSHA.

The OSHA Permissible Exposure Limits are based in the 1989 PELs and the June, 1993 Air Contaminants Rule (Federal Register: 58: 35338-35351 and 58: 40191). Both the current PELs and the vacated PELs are indicated. The phrase, “Vacated 1989 PEL,” is placed next to the PEL that was vacated by Court Order.

SKIN: Used when there is a danger of cutaneous absorption.

STEL-Short Term Exposure Limit: Short Term Exposure Limit, usually a 15-minute time-weighted average (TWA) exposure that should not be exceeded at any time during a workday, even if the 8-hr TWA is within the TLV-TWA, PEL-TWA or REL-TWA.

EXPOSURE LIMITS IN AIR (continued):

TLV-Threshold Limit Value: An airborne concentration of a substance that represents conditions under which it is generally believed that nearly all workers may be repeatedly exposed without adverse effect. The duration must be considered, including the 8-hour (TLV, PEL) or up to a 10-hour (REL) workday and a 40-hour workweek.

TWA-Time Weighted Average: Time Weighted Average exposure concentration for a conventional 8-hour (TLV, PEL) or up to a 10-hour (REL) workday and a 40-hour workweek.

IDLH-Immediately Dangerous to Life and Health: This level represents a concentration from which one can escape within 30-minutes without suffering escape-preventing or permanent injury.

HAZARDOUS MATERIALS IDENTIFICATION SYSTEM HAZARD RATINGS: This rating system was developed by the National Paint and Coating Association and has been adopted by industry to identify the degree of chemical hazards.

HEALTH HAZARD: 0 (Minimal Hazard): No significant health risk, irritation of skin or eyes not anticipated. Skin Irritation: Essentially non-irritating. PI or Draize = “0”. Eye Irritation: Essentially non-irritating, or minimal effects which clear in <24 hours [e.g. mechanical irritation]. Draize = “0”.

Oral Toxicity LD50 Rat or Rabbit: < 5000 mg/kg. Dermal Toxicity LD50 Rat or Rabbit: < 2000 mg/kg. Inhalation Toxicity 4-hrs LC50 Rat or Rabbit: < 20 mg/L.

1 (Slight Hazard): Minor reversible Injury may occur, slightly or mildly irritating. Skin Irritation: Slightly or mildly irritating. Eye Irritation: Slightly or mildly irritating. Oral Toxicity LD50 Rat: > 500-5000 mg/kg. Dermal Toxicity LD50 Rat or Rabbit: > 1000-2000 mg/kg. Inhalation Toxicity LC50 4-hrs Rat: > 2-20 mg/L.

2 (Moderate Hazard): Temporary or transitory injury may occur. Skin Irritation: Moderately irritating; primary irritant; sensitizer. PI or Draize > 0, < 5. Eye Irritation: Moderately to severely irritating and/or corrosive; reversible corneal opacity; corneal involvement or irritation clearing in 8-21 days. Draize > 0, < 25. Oral Toxicity LD50 Rat: > 50-500 mg/kg. Dermal Toxicity LD50 Rat or Rabbit: > 200-1000 mg/kg. Inhalation Toxicity LC50 4-hrs Rat: > 0.5-2 mg/L.

3 (Serious Hazard): Major injury likely unless prompt action is taken and medical treatment is given; high level of toxicity; corrosive. Skin Irritation: Severely irritating and/or corrosive; may destroy dermal tissue, cause skin burns, dermal necrosis. PI or Draize > 5-8 with destruction of tissue. Eye Irritation: Corrosive, irreversible destruction of ocular tissue; corneal involvement or irritation persisting for more than 21 days. Draize > 80 with effects irreversible in 21 days. Oral Toxicity LD50 Rat: > 1-50 mg/kg.
HAZARDOUS MATERIALS IDENTIFICATION SYSTEM
HAZARD RATINGS (continued):

DEFINITIONS OF TERMS (Continued)

HEALTH HAZARD (continued):

3 (continued): Dermal Toxicity LD₅₀ Rat or Rabbit: > 20-200 mg/kg.
Inhalation Toxicity LC₅₀ 4-hrs Rat: > 0.05-0.5 mg/L;
4 (Severe Hazard: Life-threatening: major or permanent damage may result from single or repeated exposure. Skin Irritation: Not appropriate. Do not rate as a “4”, based on skin irritation alone. Eye Irritation: Not appropriate. Do not rate as a “4”, based on eye irritation alone. Oral Toxicity LD₅₀ Rat: ≤ 1 mg/kg. Dermal Toxicity LD₅₀ Rat or Rabbit: ≤ 20 mg/kg. Inhalation Toxicity LC₅₀ 4-hrs Rat: ≤ 0.05 mg/L.)

FLAMMABILITY HAZARD:

0 (Spontaneous Ignition Temperature
A flammable Material that will not burn in air when exposed to a temperature of 815.5°C [1500°F] for a period of 5 minutes.);
1 (Slight Hazard-Materials that will be pre-heated before ignition can occur. Material require considerable pre-heating, under all ambient temperature conditions before ignition and combustion can occur, including: Materials that will burn in air when exposed to a temperature of 815.5°C [1500°F] for a period of 5 minutes or less; Liquids, solids and semisolids having a flash point at or above 93.3°C [200°F] (e.g. OSHA Class IIIB, or; Most ordinary combustible materials; e.g. wood, paper, etc.);
2 (Moderate Hazard-Materials that must be moderately heated or exposed to relatively high ambient temperatures before ignition can occur. Materials in this degree would not, under normal conditions, form hazardous atmospheres in air, but under high ambient temperatures or moderate heating may release vapor in sufficient quantities to produce hazardous atmospheres in air. Including: Liquids having a flash-point at or above 37.8°C [100°F]; Solid materials in the form of course dusts that may burn rapidly but that generally do not form explosive atmospheres; Solid materials in a fibrous or shredded form that may burn rapidly and create flash fire hazards (e.g. cotton, sisal, hemp; Solids and semisolids that readily give off flammable vapors.);
3 (Serious Hazard- Liquids and solids that can be ignited under almost all ambient temperature conditions. Materials in this degree produce hazardous atmospheres with air under almost all ambient temperatures, or, unaffected by ambient temperature, are readily ignited under almost all conditions, including: Liquids having a flash point below 22.8°C [73°F] and having a boiling point at or above 38°C [100°F] and below 37.8°C [100°F] (e.g. OSHA Class IB and IC);
4 (Severe Hazard-Materials that will rapidly or completely vaporize at atmospheric pressure and normal ambient temperature or that are readily dispersed in air, and which will burn readily, including: Flammable gases; Flammable cryogenic materials; Any liquid or gaseous material that is liquid while under pressure and has a flash point below 22.8°C [73°F] and a boiling point below 37.8°C [100°F] (e.g. OSHA Class IA; Material that ignites spontaneously when exposed to air at a temperature of 54.4°C [130°F] or below (e.g. pyrophoric)).

PHYSICAL HAZARD:

0 (Water Reactivity: Materials that do not react with water. Organic Peroxides: Materials that are normally stable, even under fire conditions and will not react with water. Explosives: Substances that are Non-Explosive. Unstable Compressed Gases: No Rating. Pyrophorics: No Rating. Oxidizers: No “0” rating allowed. Unstable Reactives: Substances that will not polymerize, decompose, condense or self-react.);
1 (Water Reactivity: Materials that change or decompose upon exposure to moisture. Physical Reactives: Substances that readily undergo hazardous polymerization, or self-ignite when mixed with cellulose in a 1:1 ratio, or which exhibits a mean pressure rise time less than or equal to the pressure rise time of a 1.1 nitric acid (65%)/cellulose mixture and the criteria for Packaging Group I and II are not met. Unstable Reactives: Substances that may decompose, condense or self-react, but only under conditions of high temperature and/or pressure and have little or no potential to cause significant heat generation or explosive hazard. Pyrophorics: Materials that, in themselves, are normally unstable and will readily undergo violent chemical change, but will not detonate. These materials may also react violently with water. Explosives: Division 1.4 – Explosive substances where the explosive effect are largely confined to the package and no projection of fragments of appreciable size or range are expected. An external fire must not cause virtually instantaneous explosion of almost the entire contents of the package. Compressed Gases: Pressurized and meet OSHA definition but < 514.7 psi absolute at 21.1°C (70°F) [500 psig]. Pyrophorics: No Rating. Oxidizers: Packaging Group II Solids: any material that, either in concentration tested, exhibits a mean burning time of less than or equal to the mean burning time of a 2:3 potassium bromate/cellulose mixture and the criteria for Packaging Group I and II are not met. Unstable Reactives: Substances that may polymerize, decompose, condense, or self-react at ambient temperature and/or pressure, but have a low potential for significant heat generation or explosion. Substances that readily form peroxides upon exposure to air or oxygen at room temperature; 3 (Water Reactivity: Materials that may form explosive reactions with water. Organic Peroxides: Materials that are capable of detonation or explosive reaction, but require a strong initiating source, or must be heated under confinement before initiation; or materials that react explosively with water. Explosives: Division 1.2 – Explosive substances that have little or no potential to cause significant heat generation or explosion, but do not have a mass explosion hazard. Compressed Gases: Pressure ≥ 514.7 psi absolute at 21.1°C (70°F) [500 psig]. Pyrophorics: No Rating. Oxidizers: Packaging Group I Solids: any material that, in either concentration tested, exhibits a mean burning time less than the mean burning time of a 3.2 potassium bromate/cellulose mixture and the criteria for Packing Group I and II are not met. Unstable Reactives: Substances that may polymerize, decompose, condense or self-react at ambient temperature and/or pressure and have a moderate potential to cause significant heat generation or explosion.)

HAZARDOUS MATERIALS IDENTIFICATION SYSTEM
HAZARD RATINGS (continued):

1 (continued): Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. These materials may react with water, but will not release energy. Explosives: Division 1.5 & 1.6 substances that are very insensitive explosives or that do not have a mass explosion hazard. Compressed Gases: Pressure below OSHA definition. Pyrophorics: No Rating. Oxidizers: Packaging Group III; Solids: any material that in either concentration tested, exhibits a mean burning time less than or equal to the mean burning time of a 3.7 potassium bromate/cellulose mixture and the criteria for Packing Group I and II are not met. Unstable Reactives: Substances that may decompose, condense or self-react, but only under conditions of high temperature and/or pressure and have little or no potential to cause significant heat generation or explosive hazard. Pyrophorics: Materials that, in themselves, are normally unstable and will readily undergo violent chemical change, but will not detonate. These materials may also react violently with water. Explosives: Division 1.4 – Explosive substances where the explosive effect are largely confined to the package and no projection of fragments of appreciable size or range are expected. An external fire must not cause virtually instantaneous explosion of almost the entire contents of the package. Compressed Gases: Pressurized and meet OSHA definition but < 514.7 psi absolute at 21.1°C (70°F) [500 psig]. Pyrophorics: No Rating. Oxidizers: Packaging Group II Solids: any material that, either in concentration tested, exhibits a mean burning time of less than or equal to the mean burning time of a 2:3 potassium bromate/cellulose mixture and the criteria for Packaging Group I and II are not met. Unstable Reactives: Substances that may polymerize, decompose, condense, or self-react at ambient temperature and/or pressure, but have a low potential for significant heat generation or explosion. Substances that readily form peroxides upon exposure to air or oxygen at room temperature; 3 (Water Reactivity: Materials that may form explosive reactions with water. Organic Peroxides: Materials that are capable of detonation or explosive reaction, but require a strong initiating source, or must be heated under confinement before initiation; or materials that react explosively with water. Explosives: Division 1.2 – Explosive substances that have little or no potential to cause significant heat generation or explosion, but do not have a mass explosion hazard. Compressed Gases: Pressure ≥ 514.7 psi absolute at 21.1°C (70°F) [500 psig]. Pyrophorics: No Rating. Oxidizers: Packaging Group I Solids: any material that, in either concentration tested, exhibits a mean burning time less than the mean burning time of a 3.2 potassium bromate/cellulose mixture and the criteria for Packing Group I and II are not met. Unstable Reactives: Substances that may polymerize, decompose, condense or self-react at ambient temperature and/or pressure and have a moderate potential to cause significant heat generation or explosion.)

NITROGEN, CHLORINE GAS MIXTURE MSDS

EFFECTIVE DATE: JUNE 18, 2007

MATH0027
HAZARDOUS MATERIALS IDENTIFICATION SYSTEM
HAZARD RATINGS (continued):
PHYSICAL HAZARD (continued): 4 (Water Reactivity: Materials that react explosively with water without requiring heat or confinement. Organic Peroxides: Materials that are readily capable of detonation or explosive decomposition at normal temperature and pressures. Explosives: Division 1.1 & 1.2-explosive substances that have a mass explosion hazard or have a projection hazard. A mass explosion is one that affects almost the entire load instantaneously. Compressed Gases: No Rating. Pyrophorics: Add to the definition of Flammability “4.” Oxidizers: No “4” rating. Unstable Reactives: Substances that may polymerize, decompose, condense or self-react at ambient temperature and/or pressure and have a high potential to cause significant heat generation or explosion.).

NATIONAL FIRE PROTECTION ASSOCIATION HAZARD RATINGS:
HEALTH HAZARD: 0 (material that on exposure under fire conditions would offer no hazard beyond that of ordinary combustible materials); 1 (materials that on exposure under fire conditions could cause irritation or minor residual injury); 2 (materials that on intense or continued exposure under fire conditions could cause temporary incapacitation or possible residual injury); 3 (materials that can on short exposure could cause serious temporary or residual injury); 4 (materials that under very short exposure could cause death or major residual injury).

FLAMMABILITY HAZARD: 0 Materials that will not burn under typical fire conditions, including intrinsically noncombustible materials such as concrete, stone, and sand. 1 Materials that must be preheated before ignition can occur. Materials in this degree require considerable preheating, under all ambient temperature conditions, before ignition and combustion can occur. 2 Materials that must be moderately heated or exposed to relatively high ambient temperatures before ignition can occur. Materials in this degree would not under normal conditions form hazardous atmospheres with air, but under high ambient temperatures or under moderate heating could release vapor in sufficient quantities to produce hazardous atmospheres with air. 3 Liquids and solids that can be ignited under almost all ambient temperature conditions. Materials in this degree produce hazardous atmospheres with air under almost all ambient temperatures or, though unaffected by ambient temperatures, are readily ignited under almost all conditions. 4 Materials that will rapidly or completely vaporize at atmospheric pressure and normal ambient temperature or that are readily dispersed in air and will burn readily.

INSTABILITY HAZARD: 0 Materials that in themselves are normally stable, even under fire conditions. 1 Materials that in themselves are normally stable, but that can become unstable at elevated temperatures and pressures. 2 Materials that readily undergo violent chemical change at elevated temperatures and pressures. 3 Materials that in themselves are capable of detonation or explosive decomposition or explosive reaction, but that require a strong initiating source or that must be heated under confinement before initiation. 4 Materials that in themselves are readily capable of detonation or explosive decomposition or explosive reaction at normal temperatures and pressures.

FLAMMABILITY LIMITS IN AIR: Much of the information related to fire and explosion is derived from the National Fire Protection Association (NFPA). Flash Point - Minimum temperature at which a liquid gives off sufficient vapors to form an ignitable mixture with air. Autoignition Temperature: The minimum temperature required to initiate combustion in air with no other source of ignition. LEL - the lowest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source. UEL - the highest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source.

TOXICOLOGICAL INFORMATION: Human and Animal Toxicology: Possible health hazards as derived from human data, animal studies, or from the results of studies with similar compounds are presented. Definitions of some terms used in this section are: LD₅₀ - Lethal Dose (solids & liquids) which kills 50% of the exposed animals; LC₅₀ - Lethal Concentration (gases) which kills 50% of the exposed animals; ppm concentration expressed in parts of material per million parts of air or water; mg/m³ concentration expressed in weight of substance per volume of air; mg/kg quantity of material, by weight, administered to a test subject, based on their body weight in kg. Other measures of toxicity include TDL₅₀, the lowest dose to cause a symptom and TCLo the lowest concentration to cause a symptom; TDₐ, LDₐ, and TCₐ, LCₐ, T Europeans, LCo, and LCo, the lowest dose (or concentration) to cause lethal or toxic effects. Cancer Information: The sources are: IARC - the International Agency for Research on Cancer; NTP - the National Toxicology Program, RTECS - the Registry of Toxic Effects of Chemical Substances, OSHA and CAL/OSHA. IARC and NTP rate chemicals on a scale of decreasing potential to cause human cancer with rankings from 1 to 4. Subrankings (2A, 2B, etc.) are also used. Other Information: BEI - ACGIH Biological Exposure Indices, represent the levels of determinants which are most likely to be observed in specimens collected from a healthy worker who has been exposed to chemicals to the same extent as a worker with inhalation exposure to the TLV.

ECOLOGICAL INFORMATION: U.S. and CANADA: ACGIH: American Conference of Governmental Industrial Hygienists, a professional association which establishes exposure limits. This section explains the impact of various laws and regulations on the material. EPA is the U.S. Environmental Protection Agency. NIOSH is the National Institute of Occupational Safety and Health, which is the research arm of the U.S. Occupational Safety and Health Administration (OSHA). WHMIS is the Canadian Workplace Hazardous Materials Information System. DOT and TC are the U.S. Department of Transportation and the Transport Canada, respectively. Superfund Amendments and Reauthorization Act (SARA); the Canadian Domestic/Non-Domestic Substances List (DSL/NDSL); the U.S. Toxic Substance Control Act (TSCA); Marine Pollutant status according to the DOT; the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund); and various state regulations. This section also includes information on the precautionary warnings which appear on the material’s package label. OSHA - U.S. Occupational Safety and Health Administration.