1. PRODUCT IDENTIFICATION

CHEMICAL NAME; CLASS: HYDROGEN SULFIDE/METHANE GAS MIXTURE

CHEMICAL FAMILY: Organic Hydrocarbon Mixture

PRODUCT USE: Calibration Gas

MANUFACTURER

MATHESON TRI-GAS, INC.

959 ROUTE 46 EAST

PARSIPPANY, NJ 07054-0624

USA

Phone: 973/257-1100

EMERGENCY PHONE

CHEMTREC (U.S. DOMESTIC): 1-800-424-9300

CHEMTREC INTERNATIONAL: 1-703-527-3887

CANUTEC (CANADA): 1-613-996-6666

2. COMPOSITION and INFORMATION ON INGREDIENTS

(10,000 ppm = 1%)
3. HAZARD IDENTIFICATION

EMERGENCY OVERVIEW: This is a colorless, highly-flammable gas mixture, with a distinct “rotten egg” odor (due to the presence of Hydrogen Sulfide). This gas mixture can cause significant, adverse health effects at relatively low concentrations, due to the presence of Hydrogen Sulfide. Overexposure can cause dizziness, headache, nausea, respiratory arrest, coma, collapse or unconsciousness. Additionally, releases of this gas mixture may cause adverse effects on the central nervous system and/or produce oxygen-deficient atmospheres. Individuals in such atmospheres may be asphyxiated. This gas mixture presents a serious fire hazard if accidentally released. Releases of this gas mixture will spread long distances; ignition or flash-back from a distance is possible. Flame or high temperature impinging on a localized area of the cylinder can cause cylinder to rupture violently or explosively. Provide adequate fire protection during emergency response.

SYMPTOMS OF OVER-EXPOSURE BY ROUTE OF EXPOSURE: The most significant route of over-exposure for this product is by inhalation. The components of this gas mixture that are not indicated to have specific health effects are either not known to have adverse health effects or there are no data regarding adverse effects.

INHALATION: One of the components of this gas mixture, Hydrogen Sulfide, is toxic and can cause adverse effects at the concentrations present in this gas mixture. Inhalation of Hydrogen Sulfide can cause dizziness, headache, nausea, respiratory arrest, coma, or unconsciousness. Exposure to Hydrogen Sulfide for more than 30 minutes at concentrations of greater than 600 ppm have been fatal. Continuous inhalation of low concentrations may cause olfactory fatigue, so that the odor is no longer an effective warning of the presence of Hydrogen Sulfide. A summary of exposure concentrations and observed effects are as follows:

<table>
<thead>
<tr>
<th>CONCENTRATION</th>
<th>EXPOSURE SYMPTOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3-30 ppm</td>
<td>Odor is obvious and unpleasant.</td>
</tr>
<tr>
<td>50 ppm</td>
<td>Eye irritation. Dryness and irritation of nose, throat.</td>
</tr>
<tr>
<td>Slightly higher than 50 ppm</td>
<td>Irritation of the respiratory system.</td>
</tr>
<tr>
<td>100-150 ppm</td>
<td>Temporary loss of smell.</td>
</tr>
<tr>
<td>Severe exposures</td>
<td>Hydrogen Sulfide which do not result in death may cause long-term symptoms such as memory loss, paralysis of facial muscles, or nerve tissue damage.</td>
</tr>
</tbody>
</table>

In addition, high concentrations of this gas mixture can cause an oxygen-deficient environment, especially if released in a poorly-ventilated area (e.g., an enclosed or confined space). Individuals breathing such an atmosphere may experience symptoms which include headaches, ringing in ears, dizziness, drowsiness, unconsciousness, nausea, vomiting, and depression of all the senses. Under some circumstances of overexposure, death may occur. The effects associated with various levels of oxygen are as follows:

<table>
<thead>
<tr>
<th>CONCENTRATION OF OXYGEN</th>
<th>OBSERVED EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-16% Oxygen</td>
<td>Breathing and pulse rate increase, muscular coordination slightly disturbed.</td>
</tr>
<tr>
<td>10-14% Oxygen</td>
<td>Emotional upset, abnormal fatigue, disturbed respiration.</td>
</tr>
<tr>
<td>6-10% Oxygen</td>
<td>Nausea, vomiting, collapse, or loss of consciousness.</td>
</tr>
<tr>
<td>Below 6%</td>
<td>Convulsive movements, possible respiratory collapse, and death.</td>
</tr>
</tbody>
</table>

It should be noted that before adverse health effects or suffocation could occur, the lower flammability limits of the components of this gas mixture in air may be exceeded, possibly causing an explosive atmosphere as well as an oxygen-deficient environment.

CONTACT WITH SKIN or EYES: Hydrogen Sulfide, a component of this gas mixture, may be irritating to the skin. Inflammation and irritation of the eyes can occur at very low airborne concentrations (less than 10 ppm Hydrogen Sulfide). Exposure over several hours may result in “gas eyes” or “sore eyes” with symptoms of scratchiness, irritation, tearing and burning. Above 50 ppm, there is an intense tearing, blurring of vision, and pain when looking at light. Exposed individuals may see rings around bright lights. Most symptoms disappear when exposure ceases; however, in serious cases, the eye can be permanently damaged. In addition, contact with rapidly expanding gases (which are released under high pressure) may cause frostbite.
3. HAZARD IDENTIFICATION (Continued)

SKIN ABSORPTION: No component of this gas mixture presents a hazard of skin absorption.

HEALTH EFFECTS OR RISKS FROM EXPOSURE: Over-exposure to this gas mixture may cause the following health effects:

ACUTE: Due to the presence of Hydrogen Sulfide, inhalation of relatively low concentrations of this gas mixture can cause dizziness, headache, and nausea. Exposure to higher concentrations of this gas mixture can result in respiratory arrest, coma, and may be fatal due to the toxicity of Hydrogen Sulfide and oxygen deficiency. Continuous inhalation of low concentrations may cause olfactory fatigue, so that the odor of Hydrogen Sulfide is no longer an effective warning of over-exposure to this gas mixture. Additionally this gas mixture may cause skin and eye irritation.

CHRONIC: Severe exposures which do not result in death may cause long-term symptoms such as memory loss, paralysis of facial muscles, or nerve tissue damage.

TARGET ORGANS: ACUTE: Respiratory system, skin, eyes, central nervous system. CHRONIC: Central nervous system.

HMIS RATING: HEALTH HAZARD = 2 FLAMMABILITY HAZARD = 4 INSTABILITY HAZARD = 0

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe

4. FIRST-AID MEASURES

GENERAL INFORMATION: RESCUERS SHOULD NOT ATTEMPT TO RETRIEVE VICTIMS OF EXPOSURE TO THIS GAS MIXTURE WITHOUT ADEQUATE PERSONAL PROTECTIVE EQUIPMENT. At a minimum, Self-Contained Breathing Apparatus and Fire-Retardant clothing must be worn. Adequate fire protection must be provided during rescue situations. Remove to fresh air, as quickly as possible. Only trained personnel should administer supplemental oxygen and/or cardio-pulmonary resuscitation, if necessary. Seek medical attention immediately.

SKIN EXPOSURE: Rinse exposed skin for 15 minutes if any irritation or adverse effects occur. If release of this gas mixture has resulted in frostbite, warm affected area slowly. Seek immediate medical attention.

EYE EXPOSURE: If release of this gas mixture has affected the eyes, seek immediate medical attention.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: Pre-existing acute or chronic respiratory conditions may be aggravated by overexposure to this gas mixture.

RECOMMENDATIONS TO PHYSICIANS: Administer oxygen and continue even after spontaneous breathing is established. If pulmonary edema ensues, treat accordingly. In severe poisonings, treat with amylnitrite and sodium nitrite as for cyanide poisoning, but omit sodium thiosulfate injection. Use of antibiotics should be considered at the first sign of pulmonary infection. Atropine sulfate may contribute some symptomatic relief. In event of eye contamination, conjunctivitis may be relieved by instillation of 1 drop of olive oil and sometimes by 3 to 4 drops of epinephrine solution (1:1000) at frequent intervals (e.g. 5 minutes). Occasionally, local anesthetics and hot or cold compresses are necessary to control pain.

5. FIRE-FIGHTING MEASURES

FLASH POINT: Not applicable for a flammable gas.

AUTOIGNITION TEMPERATURE: Not determined for mixture.

For Hydrogen Sulfide: 260°C (500°F)
For Methane: 537°C (999°F)

FLAMMABLE LIMITS (in air by volume, %): Not determined for mixture. The following are available for the flammable component:

<table>
<thead>
<tr>
<th>HYDROGEN SULFIDE</th>
<th>METHANE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower (LEL)</td>
<td>4.0%</td>
</tr>
<tr>
<td>Upper (UEL)</td>
<td>44.0%</td>
</tr>
</tbody>
</table>

HYDROGEN SULFIDE, METHANE GAS MIXTURE MSDS
PAGE 3 OF 12 EFFECTIVE DATE: JUNE 8, 2005
5. FIRE-FIGHTING MEASURES (Continued)

FIRE EXTINGUISHING MATERIALS: Extinguish fires of this gas mixture by shutting-off the source of gas. Use water spray to cool fire-exposed structures and equipment.

UNUSUAL FIRE AND EXPLOSION HAZARD: DANGER! This gas is extremely flammable and readily forms explosive mixtures with air over a very wide range. If released into a confined space, an extreme fire hazard exists.

EXPLOSION SENSITIVITY TO MECHANICAL IMPACT: Not sensitive.

EXPLOSION SENSITIVITY TO STATIC DISCHARGE: Static discharge may cause this gas mixture to ignite explosively.

SPECIAL FIRE-FIGHTING PROCEDURES: Evacuate all personnel from danger area. Immediately cool cylinders with water spray from maximum distance, taking care to NOT extinguish flames if source of gas has not been stopped. Stop the leak and flow of gas before extinguishing fire. If release is still occurring, explosive re-ignition may occur. In event that fire is extinguished before the leak is stopped, attempt to increase ventilation to area to prevent formation of explosive air/gas mixtures. Incipient fire responders should wear eye protection. Structural fire fighters must wear Self-Contained Breathing Apparatus and full protective equipment. When cool, move cylinders from fire area if this can be done without risk to firefighters. Other information for pre-planning can be found in the American Petroleum Institute Publications 2510 and 1510A, and the North American Emergency Response Guidebook (Guide Number 115).

6. ACCIDENTAL RELEASE MEASURES

LEAK RESPONSE: Evacuate immediate area. Uncontrolled releases should be responded to by trained personnel using pre-planned procedures. Eliminate any possible source of ignition and provide maximum explosion-proof ventilation. Proper protective equipment, including fire protection, should be used in the event of a significant release from a single cylinder. Use only non-sparking tools. Call CHEMTREC (1-800-424-9300) for emergency assistance. Or if in Canada, call CANUTEC (613-996-6666).

Attempt to close the main source valve prior to entering the area. If this does not stop the release (or if it is not possible to reach the valve), allow the gas to release in-place or remove it to a safe area and allow the gas to be released there. Protect personnel attempting to shut-off with water spray. Monitor the surrounding area for combustible gas levels and the level of Oxygen. The atmosphere must have not more than 10% of the LEL of each component gas (see Section 5, Fire-Fighting Measures) and at least 19.5 percent Oxygen before non-emergency personnel can be allowed in the area without Self-Contained Breathing Apparatus and fire protection.

7. HANDLING and USE

WORK PRACTICES AND HYGIENE PRACTICES

Do not eat or drink while handling chemicals.

Be aware of all potential exposure symptoms; exposures to a fatal oxygen-deficient atmosphere could occur without any significant warning symptoms.

All work operations should be monitored in such a way that emergency personnel can be immediately contacted in the event of a release.

Workers who handle this gas mixture should wear protective clothing, as listed in Section 8 (Exposure Controls and Personal Protection).

If ventilation controls are not adequate to provide sufficient oxygen content, proper respiratory protection equipment should be provided and workers using such equipment should be carefully trained in its operation and limitations.
WORK PRACTICES AND HYGIENE PRACTICES (continued):

Precautions must always be taken to prevent suck-back of foreign materials into the cylinder by using a check-valve, or vacuum break, since suck-back may cause dangerous pressure changes within the cylinder.

STORAGE AND HANDLING PRACTICES:

Cylinders should be stored upright and be firmly secured to prevent falling or being knocked-over. Cylinders can be stored in the open, but in such cases, should be protected against extremes of weather and from the dampness of the ground to prevent rusting. Cylinders should be stored in dry, well-ventilated areas away from sources of heat or ignition. Do not allow the area where cylinders are stored to exceed 52°C (125°F).

Cylinders should be separated from oxygen cylinders, or other oxidizers, by a minimum distance of 20 ft., or by a barrier of non-combustible material at least 5 ft. high, having a fire-resistance rating of at least 0.5 hours. Isolate from other incompatible chemicals (refer to Section 10, Stability and Reactivity). Storage areas must meet National Electrical Codes for Class 1 Hazardous Areas. Post “No Smoking or Open Flames” signs in storage or use areas. Consider leak detection and alarm for storage and use areas. Have appropriate extinguishing equipment in storage area (i.e. sprinkler system, portable fire extinguishers).

SPECIAL PRECAUTIONS FOR HANDLING GAS CYLINDERS: Compressed gases can present significant safety hazards. The following rules are applicable to work situations in which cylinders are being used.

Before Use: Move cylinders with a suitable hand-truck. Do not drag, slide or roll cylinders. Do not drop cylinders or permit them to strike each other. Secure cylinders firmly. Leave the valve protection cap (where provided) in-place until cylinder is ready for use.

During Use: Use designated CGA fittings and other support equipment. Do not use adapters. Do not use oils or grease on gas-handling fittings or equipment. Immediately contact the supplier if there are any difficulties associated with operating the cylinder valve. Never insert an object (e.g wrench, screwdriver, pry bar, etc.) into valve cap openings. Doing so may damage the valve, causing a leak to occur. Use an adjustable strap wrench to remove over-tight or rusted caps. Never strike an arc, on a compressed gas cylinder or make a cylinder part of an electric circuit.

After Use: Close main cylinder valve. Replace valve protection cap. Close valve after each use and when empty. Mark empty cylinders “EMPTY”.

PROTECTIVE PRACTICES DURING MAINTENANCE OF CONTAMINATED EQUIPMENT: Refer to current CGA Guidelines for information on protective practices during maintenance of contaminated equipment.

8. EXPOSURE CONTROLS - PERSONAL PROTECTION

VENTILATION AND ENGINEERING CONTROLS: Use with adequate, explosion-proof ventilation to ensure compliance with exposure limits described in Section 2 (Composition and Information on Ingredients). Local exhaust ventilation is preferred, because it prevents dispersion of this gas mixture into the work place by eliminating it at its source. If appropriate, install automatic monitoring equipment to detect the level of Oxygen and the presence of potentially explosive air-gas mixtures.

RESPIRATORY PROTECTION: Maintain the Oxygen level above 19.5% in the workplace. If necessary, use only respiratory protection authorized in the U.S. Federal OSHA Respiratory Protection Standard (29 CFR 1910.134), or equivalent U.S. State standards and Canadian CSA Standard Z94.4-93. Oxygen levels below 19.5% are considered IDLH by OSHA. In such atmospheres, use of a full-facepiece pressure/demand SCBA or a full facepiece, supplied air respirator with auxiliary self-contained air supply is required under OSHA’s Respiratory Protection Standard (1910.134-1998).
8. EXPOSURE CONTROLS - PERSONAL PROTECTION (Continued)

RESPIRATORY PROTECTION (continued): The following are NIOSH respiratory protection guidelines for the Hydrogen Sulfide component of this gas mixture. These are presented as this component presents a risk of toxicity in this mixture.

HYDROGEN SULFIDE

CONCENTRATION RESPIRATORY PROTECTION
Up to 100 ppm: Any Powered, Air-Purifying Respirator (PAPR) with cartridge(s), or any Air-Purifying, Full-Facepiece Respirator (gas mask) with a chin-style, front- or back-mounted canister, or any Supplied-Air Respirator (SAR), or any Self-Contained Breathing Apparatus (SCBA) with a full facepiece.

Emergency or Planned Entry Into Unknown Concentrations or IDLH Conditions: Any SCBA that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode, or any SAR that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary SCBA operated in pressure-demand or other positive-pressure mode.

Escape: Any Air-Purifying, Full-Facepiece Respirator (gas mask) with a chin-style, front- or back-mounted canister providing protection against the compound of concern, or any appropriate escape-type, SCBA.

EYE PROTECTION: Splash goggles or safety glasses. If necessary, refer to U.S. OSHA 29 CFR 1910.133, or appropriate Canadian Standards.

BODY PROTECTION: Use body protection appropriate for task. Transfer of large quantities under pressure may require protective equipment appropriate to the task. If a hazard of injury to the feet exists due to falling objects, rolling objects, where objects may pierce the soles of the feet or where employee’s feet may be exposed to electrical hazards, foot protection should be used, as described in U.S. OSHA 29 CFR 1910.136.

9. PHYSICAL and CHEMICAL PROPERTIES

GAS DENSITY: 0.04235 lb/cu ft (6784 kg/m³)
EVAPORATION RATE (nBuAc = 1): Not applicable.
SPECIFIC GRAVITY (air = 1): 0.55491
FREIZING POINT: -82.2°C (-115.96°F)
SOLUBILITY IN WATER: Slight.
BOILING POINT (@ 1 atmos.): -161.5°C (-258.6°F)
EXPANSION RATIO: Not applicable.
SPECIFIC VOLUME (ft³/lb): 23.6113
ODOR THRESHOLD: Not applicable.
MOLECULAR WEIGHT: 16.02
VAPOR PRESSURE (psia): Not applicable.

COEFFICIENT WATER/OIL DISTRIBUTION: Not applicable.

The following information is pertinent to this product:

APPEARANCE, ODOR AND COLOR: This gas mixture is colorless and has a distinct “rotten egg” smell due to the presence of Hydrogen Sulfide.

HOW TO DETECT THIS SUBSTANCE (warning properties): The smell of this gas mixture cannot be relied upon as an adequate warning of a release as the Hydrogen Sulfide component causes olfactory fatigue after continuous exposure to low concentration. In terms of leak detection, fittings and joints can be painted with a soap solution to detect leaks, which will be indicated by a bubble formation.

10. STABILITY and REACTIVITY

STABILITY: Stable at standard temperatures and pressures.

DECOMPOSITION PRODUCTS: The decomposition products for individual components are as follows:

Hydrogen Sulfide decomposes to form water and sulfur oxide.
Methane: When ignited in presence of oxygen, Methane will burn, producing carbon monoxide and carbon dioxide.
10. STABILITY and REACTIVITY (Continued)

MATERIALS WITH WHICH SUBSTANCE IS INCOMPATIBLE: The Hydrogen Sulfide component of this gas mixture, is a strong reducing agent and may also react with alkaline materials, metals (e.g., copper, lead, silver), and metal oxides, even in relatively low concentrations. The Methane component of this gas mixture is incompatible with strong oxidizers (i.e. chlorine, bromine, pentafluoride, oxygen difluoride, and nitrogen trifluoride).

HAZARDOUS POLYMERIZATION: Will not occur.

CONDITIONS TO AVOID: Contact with incompatible material, heat, spark or flame. Cylinders exposed to high temperatures or direct flame can rupture or burst.

11. TOXICOLOGICAL INFORMATION

TOXICITY DATA: The Methane component is a simple asphyxiant (SA), which acts to displace oxygen in the environment. No toxicity data are applicable. The following are toxicity data for the Hydrogen Sulfide component of this gas mixture:

HYDROGEN SULFIDE:

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Value</th>
<th>Duration/Exposure</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>LClO (Inhalation-Human)</td>
<td>600 ppm/30 minutes</td>
<td></td>
<td>Brain and Coverings: other degenerative changes; Lungs, Thorax, or Respiration: other changes; Biochemical: Enzyme inhibition, induction, or change in blood or tissue levels: cytochrome oxidases (including oxidative phosphorylation)</td>
</tr>
<tr>
<td>LClO (Inhalation-Man)</td>
<td>5700 µg/kg: Behavioral: coma; Lungs, Thorax, or Respiration: chronic pulmonary edema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LClO (Inhalation-Human)</td>
<td>800 ppm/5 minutes</td>
<td></td>
<td>Brain and Coverings: other degenerative changes; Lungs, Thorax, or Respiration: other changes; Biochemical: Enzyme inhibition, induction, or change in blood or tissue levels: cytochrome oxidases (including oxidative phosphorylation)</td>
</tr>
<tr>
<td>LClO (Inhalation-Mammal-species unspecified)</td>
<td>800 ppm/5 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC50 (Inhalation-Rat)</td>
<td>444 ppm: Lungs, Thorax, or Respiration: other changes; Gastrointestinal: hypermotility, diarrhea; Kidney, Ureter, Bladder: urine volume increased</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCLo (Inhalation-Rat)</td>
<td>30 ppm/6 hours/10 weeks-intermittent: Sense Organs and Special Senses (Olfaction): olfactory nerve change, effect, not otherwise specified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCLo (Inhalation-Rat)</td>
<td>1200 mg/m³/2 hours/5 days-intermittent: Brain and Coverings: other degenerative changes; Biochemical: Enzyme inhibition, induction, or change in blood or tissue levels: true cholinesterase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCLo (Inhalation-Rat)</td>
<td>20 ppm: female 6-22 day(s) after conception lactating female 21 day(s) post-birth: Reproductive: Effects on Newborn: physical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCLo (Inhalation-Mouse)</td>
<td>80 ppm/6 hours/90 days-intermittent: Nutritional and Gross Metabolic: weight loss or decreased weight gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCLo (Inhalation-Mouse)</td>
<td>80 ppm/6 hours/90 days-intermittent: Nutritional and Gross Metabolic: weight loss or decreased weight gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCLo (Inhalation-Rabbit)</td>
<td>40 mg/m³/5 hours/30 weeks-intermittent: Sense Organs and Special Senses (Eye): conjunctive irritation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUSPECTED CANCER AGENT: The components of this gas mixture are not found on the following lists: FEDERAL OSHA Z LIST, IARC, NTP, CAL/OSHA, and therefore is not considered to be, nor suspected to be a cancer-causing agent by these agencies.

IRRITANCY OF PRODUCT: This gas mixture may be irritating to contaminated tissue, due to the presence of Hydrogen Sulfide.

SENSITIZATION TO THE PRODUCT: The components of this product are not known to be skin or respiratory sensitizers.

REPRODUCTIVE TOXICITY INFORMATION: Listed below is information concerning the effects of the components of this gas mixture on the human reproductive system.

Mutagenicity: The components of this gas mixture are not reported to cause mutagenic effects in humans.

Embryotoxicity: The components of this gas mixture are not reported to cause embryotoxic effects in humans.

Teratogenicity: The components of this gas mixture are not reported to cause teratogenic effects in humans.

Reproductive Toxicity: The components of this gas mixture are not reported to cause adverse reproductive effects in humans. Animal reproductive data are available for the Hydrogen Sulfide component of this gas mixture at high doses.

BIOLOGICAL EXPOSURE INDICES (BEIs): Currently, there are no Biological Exposure Indices (BEIs) determined for the components of this gas mixture.
12. ECOLOGICAL INFORMATION

ENVIRONMENTAL STABILITY: This gas mixture will be dissipated rapidly in well-ventilated areas.

EFFECT OF MATERIAL ON PLANTS or ANIMALS: Any adverse effect on animals would be related to oxygen deficient environments.

EFFECT OF CHEMICAL ON AQUATIC LIFE: Release of this gas mixture may cause an adverse effect on aquatic life. The following are aquatic toxicity data for the Hydrogen Sulfide component.

- TLm (Asellus sp) 96 hours = 0.111 mg/L
- TLm (Crangonyx sp) 96 hours = 1.07 mg/L
- TLm (Gammarus) 96 hours = 0.84 mg/L
- LC50 (fly inhalation) 960 minutes = 380 mg/m³
- LC50 (fly inhalation) 7 minutes = 1500 mg/m³
- TLm (Lepomis macrochirus, bluegill sunfish) 96 hours = 0.0478 mg/L
- TLm (Lepomis macrochirus, bluegill sunfish) 96 hours = 0.0448 mg/L @ 21-22°C
- TLm (Pimephales promelas, fathead minnow) 96 hours = 0.0071-0.55 mg/L
- TLm (Salvelinus fontinalis, brook trout) 96 hours = 0.0216-0.038 mg/L @ 8-12.5°C

13. DISPOSAL CONSIDERATIONS

PREPARING WASTES FOR DISPOSAL: Waste disposal must be in accordance with appropriate Federal, State, and local regulations. Return cylinders with any residual product to Matheson Tri-Gas. Do not dispose of locally.

14. TRANSPORTATION INFORMATION

THIS MATERIAL IS HAZARDOUS AS DEFINED BY 49 CFR 172.101 BY THE U.S. DEPARTMENT OF TRANSPORTATION.

- PROPER SHIPPING NAME: Compressed gases, flammable, n.o.s. (Hydrogen Sulfide, Methane)
- HAZARD CLASS NUMBER and DESCRIPTION: 2.1 (Flammable Gas)
- UN IDENTIFICATION NUMBER: UN 1954
- PACKING GROUP: Not applicable
- D.O.T HAZARD LABEL: Flammable Gas

NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER (2004): 115

MARINE POLLUTANT: The components of this gas mixture are not classified by the DOT as a Marine Pollutants (as defined by 49 CFR 172.101, Appendix B).

SPECIAL SHIPPING INFORMATION: Cylinders should be transported in a secure position, in a well-ventilated vehicle. The transportation of compressed gas cylinders in automobiles or in closed-body vehicles present serious safety hazards and should be discouraged.

NOTE: Shipment of compressed gas cylinders which have not been filled with the owner’s consent is a violation of Federal law (49 CFR, Part 173.301 (b)).

TRANSPORT CANADA TRANSPORTATION OF DANGEROUS GOODS REGULATIONS: This gas mixture is considered as dangerous goods, per regulations of Transport Canada.

- PROPER SHIPPING NAME: Compressed gases, flammable, n.o.s. (Hydrogen Sulfide, Methane)
- HAZARD CLASS NUMBER and DESCRIPTION: 2.1 (Flammable Gas)
- UN IDENTIFICATION NUMBER: UN 1954
- PACKING GROUP: Not Applicable
- HAZARD LABEL: Class 2.1 (Flammable Gas)
- SPECIAL PROVISIONS: None
- EXPLOSIVE LIMIT AND LIMITED QUANTITY INDEX: 0.125
- ERAP INDEX: 3000
- PASSENGER CARRYING SHIP INDEX: Forbidden
- PASSENGER CARRYING ROAD VEHICLE OR PASSENGER CARRYING RAILWAY VEHICLE INDEX: Forbidden

NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER (2004): 115

NOTE: Shipment of compressed gas cylinders via Public Passenger Road Vehicle is a violation of Canadian law (Transport Canada Transportation of Dangerous Goods Act, 1992).
15. REGULATORY INFORMATION

ADDITIONAL U.S. REGULATIONS:

U.S. SARA REPORTING REQUIREMENTS: The Hydrogen Sulfide component of this gas mixture is subject to the reporting requirements of Sections 302, 304 and 313 of Title III of the Superfund Amendments and Reauthorization Act, as follows:

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>SARA 302 (40 CFR 355, Appendix A)</th>
<th>SARA 304 (40 CFR Table 302.4)</th>
<th>SARA 313 (40 CFR 372.65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Sulfide</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

U.S. SARA THRESHOLD PLANNING QUANTITY: Hydrogen Sulfide = 500 lb (227 kg)

U.S. SARA HAZARD CATEGORIES (SECTION 311/312, 40 CFR 370-21):

- **ACUTE:** Yes
- **CHRONIC:** Yes
- **FIRE:** Yes
- **REACTIVE:** No
- **SUDDEN RELEASE:** Yes

U.S. TSCA INVENTORY STATUS: Components of this product are listed on the TSCA Inventory.

U.S. CERCLA REPORTABLE QUANTITY (RQ): Hydrogen Sulfide = 100 lb (45.4 kg)

OTHER U.S. FEDERAL REGULATIONS: Methane and Hydrogen Sulfide are subject to the reporting requirements of Section 112(r) of the Clean Air Act. The threshold quantity for each of these gases is 10,000 lbs (4,540 kg). Methane is listed as Regulated Substances in quantities of 10,000 lbs (4,540 kg) or greater, per 40 CFR, Part 68 of the Risk Management for Chemical Accidental Release. Hydrogen Sulfide is listed in Table 1, as a Regulated Substance (Toxic Substance) in quantities of 10,000 lb (4,553 kg) or greater. Any process that involves a flammable gas on-site, in one location, in quantities of 10,000 lbs (4,540 kg) or greater has requirements under the Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), unless the gas is used as a fuel.

CALIFORNIA SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT (PROPOSITION 65): No component of this product is on the California Proposition 65 lists.

LABELING: Cylinders of this gas mixture should be labeled for precautionary information per the guidelines of the CGA. Refer to the CGA for further information.

ADDITIONAL CANADIAN REGULATIONS:

CANADIAN DSL/NDSL INVENTORY STATUS: The components of this product are listed on the DSL Inventory.

OTHER CANADIAN REGULATIONS: Not applicable.

CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA) PRIORITIES SUBSTANCES LISTS: The components of this product are not on the CEPA Priorities Substances Lists.

CANADIAN WHMIS CLASSIFICATION and SYMBOLS: This gas mixture would be categorized as a Controlled Product, Hazard Classes: **A** (compressed gas), **D2B** (Materials Causing Other Toxic Effects - Acute and Chronic Toxic Effects), and **F** (flammable). The following symbol is required for WHMIS compliance for this gas mixture.
HYDROGEN SULFIDE, METHANE GAS MIXTURE MSDS

16. OTHER INFORMATION

CREATION DATE: November 29, 2001
REVISION DATE: June 7, 2005

REVISION HISTORY: Review and up-date of entire MSDS, June 2005.

MIXTURES: When two or more gases or liquefied gases are mixed, their hazardous properties may combine to create additional, unexpected hazards. Obtain and evaluate the safety information for each component before you use the mixture. Consult an Industrial Hygienist or other trained person when you make your safety evaluation of the end product. Remember, gases and liquids have properties which can cause serious injury or death.

Further information can be found in the following pamphlets published by: Compressed Gas Association Inc. (CGA), 421 Walney Road, 5th Floor, Chantilly, VA 20151. Telephone: (703) 788-2700, Fax: (703) 961-1831.

“Safe Handling of Compressed Gases in Containers” (P-1, 1999)
“Safe Handling and Storage of Compressed Gases” (AV-1, 1999)

PREPARED BY: CHEMICAL SAFETY ASSOCIATES, Inc.
PO Box 3519, La Mesa, CA 91944-3519
619/670-0609

DEFINITIONS OF TERMS

A large number of abbreviations and acronyms appear on a MSDS. Some of these which are commonly used include the following:

EXPOSURE LIMITS IN AIR

Ceiling Level: The concentration that shall not be exceeded during any part of the working exposure.

DFG MAK Pregnancy Risk Group Classification: Group A: A risk of damage to the developing embryo or fetus has been unequivocally demonstrated. Exposure of pregnant women can lead to damage of the developing organism, even when MAK and BAT Biological Tolerance Value for Working Materials values are observed. Group B: Currently available information indicates a risk of damage to the developing embryo or fetus must be considered to be probable. Damage to the developing organism cannot be excluded when pregnant women are exposed, even when MAK and BAT values are observed. Group C: There is no reason to fear a risk of damage to the developing embryo or fetus when MAK and BAT values are observed. Group D: Classification in one of the groups A-C is not yet possible because, although the data available may indicate a trend, they are not sufficient for final evaluation.

LOQ: Limit of Quantitation.

MAK: Federal Republic of Germany Maximum Concentration Values in the workplace.

NE: Not Established. When no exposure guidelines are established, an entry of NE is made for reference.

NIC: Notice of Intended Change.

NIOSH Ceiling: The exposure that shall not be exceeded during any part of the workday. If instantaneous monitoring is not feasible, the ceiling shall be assumed as a 15-minute TWA exposure (unless otherwise specified) that shall not be exceeded at any time during a workday.

NIOSH RELs: NIOSH’s Recommended Exposure Limits.

PEL-Permissible Exposure Limit: OSHA’s Permissible Exposure Limits. This exposure value means exactly the same as a TLV, except that it is enforceable by OSHA. The OSHA Permissible Exposure Limits are based in the 1989 PELs and the June, 1993 Air Contaminants Rule (Federal Register: 58: 35338-35351 and 58: 40191). Both the current PELs and the vacated PELs are indicated. The phrase, “Vacated 1989 PEL,” is placed next to the PEL that was vacated by Court Order.

SKIN: Used when there is a danger of cutaneous absorption.

STEL-Short Term Exposure Limit: Short Term Exposure Limit, usually a 15-minute time-weighted average (TWA) exposure that should not be exceeded at any time during a workday, even if the 8-hr TWA is within the TLV-TWA, PEL-TWA or REL-TWA.

TLV-Threshold Limit Value: An airborne concentration of a substance that represents conditions under which it is generally believed that nearly all workers may be repeatedly exposed without adverse effect. The duration must be considered, including the 8-hour.

EXPOSURE LIMITS IN AIR (continued):

TWA-Time Weighted Average: Time Weighted Average exposure concentration for a conventional 8-hr (TLV, PEL) or up to a 10-hr (REL) workday and a 40-hr workweek.

IDLH-Immediately Dangerous to Life and Health: This level represents a concentration from which one can escape within 30-minutes without suffering escape-preventing or permanent injury.

Hazardous Materials Identification System Hazard Ratings: This rating system was developed by the National Paint and Coating Association and has been adopted by industry to identify the degree of chemical hazards.

Health Hazard:

0 (Minimal Hazard): No significant health risk, irritation of skin or eyes not anticipated. Skin Irritation: Essentially non-irritating. PII or Draize = “0.” Oral Toxicity: LD50 Rat: > 2000 mg/kg. Inhalation Toxicity: Rats: > 0.5-2 mg/L; 1 (Slight Hazard: Minor reversible Injury may occur; slightly or mildly irritating. Skin Irritation: Slightly or mildly irritating. Oral Toxicity LD50 Rat: > 500-5000 mg/kg. Inhalation Toxicity: LC50 Rats: > 20 mg/L; 2 (Moderate Hazard): Temporary or transitory injury may occur. Skin Irritation: Moderately irritating; primary irritant; sensitizer. PII or Draize = 0 < 5. Oral Toxicity: LD50 Rat: > 50-500 mg/kg. Inhalation Toxicity LC50 4-hr: > 2-20 mg/L; 3 (Serious Hazard): Major injury likely unless prompt action is taken. Skin Irritation: Corrosive, irreversibly destructive of ocular tissue; corneal involvement or irritation clearing in 8-21 days. Oral Toxicity: LD50 Rat: > 50-500 mg/kg. Inhalation Toxicity LC50 Rats: > 200-1000 mg/kg. Inhalation Toxicity LC50 4-hr: > 0.5-2 mg/L; 4 (Severe Hazard): Life-threatening; major or permanent damage may result from single or repeated exposure. Skin Irritation: Not appropriate. Do not rate as a “4,” based on skin irritation alone. Eye Irritation: Not appropriate. Do not rate as a “4,” based on eye irritation alone. Oral Toxicity: LD50 Rat: > 1 mg/kg. Inhalation Toxicity LC50 Rats: > 20 mg/kg. Inhalation Toxicity LC50 4-hr: > 0.05 mg/L.

REVISION DATE:

CREATION DATE:

Page 10 of 12 MATH0035

EFFECTIVE DATE: JUNE 8, 2005
HAZARDOUS MATERIALS IDENTIFICATION SYSTEM
HAZARD RATINGS (continued):

PHYSICAL HAZARD:

0 (Minimal Hazard): Materials that will not burn in air when exposure to a temperature of 815.5°C [1500°F] for a period of 5 minutes. 1 (Slight Hazard): Materials that must be pre-heated before ignition can occur. Material require considerable pre-heating, under all ambient temperature conditions before ignition and combustion can occur, including: Materials that will burn in air when exposed to a temperature of 815.5°C [1500°F] for a period of 5 minutes or less; Liquids, solids and semisolids having a flash point at or above 37.8°C [100°F] [e.g. OSHA Class IB and IC]; Materials that are normally stable, but can become unstable at high temperature conditions before ignition can occur. Materials in this degree would not, under normal conditions, form hazardous atmospheres in air, but under high ambient temperatures or moderate heating may release vapor in sufficient quantities to produce hazardous atmospheres in air. Including: Liquids having a flash-point at or above 93.3°C [199.9°F] (Moderate Hazard-Materials that must be moderately heated or exposed to relatively high ambient temperatures before ignition can occur. Materials in this degree would not, under normal conditions, form hazardous atmospheres in air, but under high ambient temperatures or moderate heating may release vapor in sufficient quantities to produce hazardous atmospheres in air. Including: Liquids having a flash-point at or above 37.8°C [100°F]; Solid materials in the form of course dusts that may burn rapidly but that generally do not form explosive atmospheres; Solid materials in a fibrous or shredded form that may burn rapidly and create flash fire hazards (e.g. cotton, sisal, hemp; Solids and semisolids that readily give off flammable vapors); 3 (Serious Hazard- Liquids and solids that can be ignited under almost all ambient temperature conditions. Materials in this degree produce hazardous atmospheres with air under almost all ambient temperatures, or, unaffected by ambient temperature, are readily ignited under almost all conditions, including: Liquids having a flash point below 22.8°C [73°F] and having a boiling point at or above 38°C [100°F] and below 37.8°C [100°F] [e.g. OSHA Class IB and IC]; Materials that on account of their physical form or environmental conditions can form explosive mixtures with air and are readily dispersed in air (e.g., dusts of combustible solids, mists or droplets of flammable liquids); Materials that burn extremely rapidly, usually by reason of self-contained oxygen (e.g. dry nitrocellulose and many organic peroxides)]; 4 (Severe Hazard-Materials that will rapidly or completely vaporize at atmospheric pressure and normal ambient temperature or that are readily dispersed in air, and which will burn readily, including: Flammable gases; Flammable cryogenic materials; Any liquid or gaseous material that is liquid while under pressure and has a flash point below 22.8°C [73°F] and a boiling point below 37.8°C [100°F] [e.g. OSHA Class IA]; Materials that ignite spontaneously when exposed to air at a temperature of 54.4°C [130°F] or below [e.g. pyrophoric]).

HAZARDOUS MATERIALS IDENTIFICATION SYSTEM
HAZARD RATINGS (continued):

HYDROGEN SULFIDE, METHANE GAS MIXTURE MSDS

EFFECTIVE DATE: JUNE 8, 2005

MATH0035
DEFINITIONS OF TERMS (Continued)

NATIONAL FIRE PROTECTION ASSOCIATION HAZARD RATINGS:

HEALTH HAZARD: 0 (material that on exposure under fire conditions would offer no hazard beyond that of ordinary combustible materials); 1 (materials that on exposure under fire conditions could cause irritation or minor residual injury); 2 (materials that on intense or continued exposure under fire conditions could cause temporary incapacitation or possible residual injury); 3 (materials that can on short exposure could cause serious temporary or residual injury); 4 (materials that under very short exposure could cause death or major residual injury).

FLAMMABILITY HAZARD: 0 Materials that will not burn under typical fire conditions, including intrinsically noncombustible materials such as concrete, stone, and sand. 1 Materials that must be preheated before ignition can occur. Materials in this degree require considerable preheating, under all ambient temperature conditions, before ignition and combustion can occur.

2 Materials that must be moderately heated or exposed to relatively high ambient temperatures before ignition can occur. Materials in this degree would not under normal conditions form hazardous atmospheres with air, but under high ambient temperatures or under moderate heating could release vapor in sufficient quantities to produce hazardous atmospheres with air.

3 Liquids and solids that can be ignited under almost all ambient temperature conditions. Materials in this degree produce hazardous atmospheres with air under almost all ambient temperatures or, though unaffected by ambient temperatures, are readily ignited under almost all conditions.

4 Materials that will rapidly or completely vaporize at atmospheric pressure and normal ambient temperature or that are readily dispersed in air and vaporize readily.

INSTABILITY HAZARD: 0 Materials that in themselves are normally stable, even under fire conditions. 1 Materials that in themselves are normally stable, but that can become unstable at elevated temperatures and pressures. 2 Materials that readily undergo violent chemical change at elevated temperatures and pressures.

3 Materials that in themselves are capable of detonation or explosive decomposition or explosive reaction, but that require a strong initiating source or that must be heated under confinement before initiation.

4 Materials that in themselves are readily capable of detonation or explosive decomposition or explosive reaction at normal temperatures and pressures.

FLAMMABILITY LIMITS IN AIR: Much of the information related to fire and explosion is derived from the National Fire Protection Association (NFPA). Flash Point - Minimum temperature at which a liquid gives off sufficient vapors to form an ignitable mixture with air. Autoignition Temperature: The minimum temperature required to initiate combustion in air with no other source of ignition. LEL - the lowest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source. UEL - the highest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source.

TOXICOLOGICAL INFORMATION:

Human and Animal Toxicology: Possible health hazards as derived from human data, animal studies, or from the results of studies with similar compounds are presented. Definitions of some terms used in this section are: LD₅₀ - Lethal Dose (solids & liquids) which kills 50% of the exposed animals; LC₅₀ - Lethal Concentration (gases) which kills 50% of the exposed animals; ppm concentration expressed in parts of material per million parts of air or water; mg/m³ concentration expressed in weight of substance per volume of air; mg/kg quantity of material, by weight, administered to a test subject, based on their body weight in kg. Other measures of toxicity include TDLₙ, the lowest dose to cause a symptom and TCLₙ the lowest concentration to cause a symptom; TDₙ, LDₙ, and LDₙ₀; or TC, TCo, LCLₙ, and LCo, the lowest dose (or concentration) to cause lethal or toxic effects. Cancer Information: The sources are: IARC - the International Agency for Research on Cancer; NTP - the National Toxicology Program, RTECS - the Registry of Toxic Effects of Chemical Substances, OSHA and CAL/OSHA. ACGIH Biological Exposure Indices, represents the levels of determinants which are most likely to be observed in specimens collected from a healthy worker who has been exposed to chemicals to the same extent as a worker with inhalation exposure to the TLV.

ECOLOGICAL INFORMATION:

BCF = Bioconcentration Factor, which is used to determine if a substance will concentrate in lifeforms which consume contaminated plant or animal matter; EC is the Effect Concentration in water; Eₙₜ is the Effect Concentration for 50% of the organisms exposed; NOEC is the No Observed Effect Concentration; MAC is the Maximum Acceptable Toxicant Concentration; NOCL is the No Observed Lethal Concentration; TLₙₘ = median threshold limit; Coefficient of Oil/Water Distribution is represented by log Kₒₙ or log Kₙₒ and is used to assess a substance’s behavior in the environment.

REGULATORY INFORMATION:

U.S. and Canada: This section explains the impact of various laws and regulations on the material. EPA is the U.S. Environmental Protection Agency. WHMIS is the Canadian Workplace Hazardous Materials Information System. DOT and TC are the U.S. Department of Transportation and the Transport Canada, respectively. Superfund Amendments and Reauthorization Act (SARA); the Canadian Domestic/Non-Domestic Substances List (DSL/NDSL); the U.S. Toxic Substance Control Act (TSCA); Marine Pollutant status according to the DOT; the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund); and various state regulations. This section also includes information on the precautionary warnings which appear on the material’s package label.